• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1999 年度 実績報告書

無限表現型フロベニウス多元環の研究

研究課題

研究課題/領域番号 10640008
研究機関東京農工大学

研究代表者

山形 邦夫  東京農工大学, 工学部, 教授 (60015849)

研究分担者 河田 成人  大阪市立大学, 理学部, 助教授 (50195103)
前田 博信  東京農工大学, 工学部, 助教授 (50173711)
和田 倶幸  東京農工大学, 工学部, 教授 (30134795)
田代 俶章  東京農工大学, 工学部, 教授 (00014928)
横手 一郎  東京農工大学, 工学部, 教授 (60021888)
キーワード有限次元多元環 / 表現 / クイバー / フロベニウス多元環 / 対称多元環 / 加群
研究概要

体K上有限次元の多元環の表現論における未解決問題の一つである次の問題に焦点を絞った。
問題:2つのフロベニウス多元環A,Bについて、AとBが安定同値(stable equivalence)のとき、Aが対称多元環ならBも対称的になるか?
本研究では、多元環の、双対加群によるホッホシルト拡大環が常にフロベニウスになることに注目し、上記問題の反例を構成することに成功した。ただし、この例における体は基礎体Kが代数的閉体ではないので、Kが代数的閉体に限定されると上記問題の成否は不明のままである。今後の課題として研究を継続する。

  • 研究成果

    (3件)

すべて その他

すべて 文献書誌 (3件)

  • [文献書誌] Yosuke Ohnuki: "Symmetric Hochschild extension algebras"Colloquium Mathematicum. 80・2. 155-174 (1999)

  • [文献書誌] Tomoyuki Wada: "A lower bound the Perron-Frobenius eigenvalue of the Cartan matrix of a finite group"Archive der Mathematik. 73・6. 407-413 (1999)

  • [文献書誌] Shigeto Kawata: "On standard Auslander-Reiten sequences for finite groups"Archive der Mathematik. (発表予定).

URL: 

公開日: 2001-10-23   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi