• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1999 年度 実績報告書

複素アフィン空間C^nおよびそのコンパクト化の研究

研究課題

研究課題/領域番号 10640026
研究機関熊本大学

研究代表者

古島 幹雄  熊本大学, 理学部, 教授 (00165482)

研究分担者 阿部 誠  大島商船高等専門学校, 一般科, 助教授 (90159442)
キーワードn次元複素アフィン空間 / コンパクト化 / Moishezon
研究概要

複素アフィン空間C^3の射影的コンパクト化、非射影的Moishezonコンパクト化の構造解明およびGL(2,C)のsmall有限部分群GによるC^2の商空間C^2/Gの最小正規解析的コンパクト化の分類を中心に研究を行い、一応の成果が得られたので、以下、具体的成果について述べる。まず、第2ベッチ数1をもつC^3の射影的コンパクト化は全部で6種類あることはすでに古島によって得られているが、本研究において、これらのコンパクト化(X,Y)がC^3の自然なコンパクト化(P^3、P^2)からどのようにして構成されるか、即ち、XからP^3への双有理写像ρ:X→P^3でX-Y〜^^ρ__=P^3-P^2なるものを具体的に構成することにより示した。これにより、第2ベッチ数1をもつC^3の射影的コンパクト化の構造は完全に解明されたといえる。次に、第2ベッチ数1をもつC^3の非射影的Moishezonコンパクト化(X,Y)について、その指数(index)、即ちK_x=-rYなる自然数rはr>0なる事はこれまで知られていたが、本研究においてはr=1,2である事を非正規代数曲面とその正規化の構造を詳しく調べることにより証明した。実際、r=1,2の場合は(無限に)存在することがすでに古島により得られているので、この結果により、第2ベッチ数1をもつC^3の非射影的Moishezonコンパクト化はある意味でほぼ解明されたといえる。更に、これらの研究において得られた幾つかのテクニックはC^2/Gの最小正規解析的コンパクト化の分類に応用できることが分かり、この分類を分担者の阿部誠、大学院生の山崎充裕等と共同で研究し、その分類に成功した。

  • 研究成果

    (3件)

すべて その他

すべて 文献書誌 (3件)

  • [文献書誌] 古島幹雄: "Non-projective compactifications of C^3 III:A remark on indices"Hiroshima Math.J.. 29・(2). 295-298 (1999)

  • [文献書誌] 阿部誠,古島幹雄,山崎充裕: "Amalytic compactifications of C^2/G"Kyushu J.Math.. (近刊). (2000)

  • [文献書誌] 古島幹雄: "A birational construction of projictive compactifications of C^3 with second Betlinumber equal to one"Ammali di Mathematika pusa et appl.. (近刊). (2000)

URL: 

公開日: 2001-10-23   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi