• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1998 年度 実績報告書

フーリエ変換に対するマーサー型・タウバー型定理とその応用

研究課題

研究課題/領域番号 10640145
研究機関北海道大学

研究代表者

井上 昭彦  北海道大学, 大学院理学研究科, 助教授 (50168431)

研究分担者 中田 寿夫  福岡教育大学, 教育学部, 助手 (10304693)
三上 敏夫  北海道大学, 大学院理学研究科, 助教授 (70229657)
新井 朝雄  北海道大学, 大学院理学研究科, 教授 (80134807)
キーワード偏相関関数 / タウバー型定理 / フーリエ変換 / 定常時系列 / ハンケル変換 / アーベル型定理 / 長時間記憶 / フーリエ級数
研究概要

1.定常時系列の偏相関関数の挙動。これに関して大きな成果が得られた。定常時系列の偏相関関数は有限部分からの予測に関する量であるため、解析的な取り扱いが難しく、その漸近挙動について詳しい研究は行われていなかった。井上はタウバー定常時系列に対し、その偏相関関数の長時間での挙動を決定した。得られた結果によれば、そのような偏相関関数の挙動dには、驚くほどの正則寸生があることがわかる。またここで用いられた証明のアイディアはこれからもいろいろ応用されることが期待される。主なアイディアは次の二つである。(a)一般の非決定的定常時系列に対し無限AR係数列と無限MA係数列が定義できるのだが、それらの漸近解析を行なう。(b)無限の過去と無限の未来の交差に関するSeghier-Dymの定理の離散版を証明し、それを用いて我々に必要な予測誤差に対するタウバー型条件を導き出す。
2.ハンケル変換及びフーリエ変換に対するアーベル・タウバー型定理。これが井上らにより新しく証明された。これはコサイン変換に対する井上の結果や、ハンケル変換に対するBinghcn-井上の結果をより高次の指数に対し拡張したものである。この定理の応用として、1960年代に提出された、単調とは限らないフーリエ係数を持つフーリエ級株に関するBousの問題が解決された。この問題は、指数の除外値についてもアーベル・タウバー型定理を求めよというものである。

  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] N.H.Bingham: "Ratio Mercerian theorems with applications to Hankel and Fourier transforms" Proc.London Math.Soc.(in press).

  • [文献書誌] N.H.Bingham: "Extension of the Drasin-Shea-Jordan theorem" J.Math.Soc.Japan. (in press).

  • [文献書誌] A.Inoue: "Abel-Tauber theorems for Hankel and Fourier transforms and a problem of Boas" Hokkaido Math.J.(in press).

  • [文献書誌] A.Arai: "Representation-theoretic aspects of two-dimensional quantum systems in singular vector potentials" J.Math.Phys.39・5. 2476-2498 (1998)

  • [文献書誌] T.Mikami: "Asymptotic behavior of the first exit time of randomly perturbed dynamical systems with a repulsive equilibrium point" J.Math.Soc.Japan. 50・1. 95-117 (1998)

  • [文献書誌] T.Nakata: "Pianigian-Yorke measures for non-Holder continuous potentials" Hiroshima Math.J.28・1. 95-111 (1998)

URL: 

公開日: 1999-12-11   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi