研究課題/領域番号 |
10640272
|
研究機関 | 広島大学 |
研究代表者 |
中村 純 広島大学, 総合科学部, 教授 (30130876)
|
研究分担者 |
高石 哲弥 広島経済大学, 経済学部, 講師 (60299279)
日置 慎治 帝塚山大学, 経営情報学部, 助教授 (70238252)
橋本 貴明 福井大学, 工学部, 助教授 (30228415)
宮村 修 広島大学, 理学部, 教授 (80029511)
酒井 淳 山形大学, 教育学部, 教授 (10015828)
|
キーワード | 繰り込み群 / QCD / ゲージ理論 / シミュレーション |
研究概要 |
ウイルソンの提唱した格子ゲージ理論においては、作用は格子上でゲージ不変な項の和によって表される。その形には不定性があるが、これまでは最も単純な1×1ループ形の作用によってシミュレーションが進められてきたが、それ以外の項を導入することにより、より連続極限に近い結果が得られることが近年明らかになってきた。 報告者のグループでは、繰り込み変換を数値的に行い、作用空間での変化(フロー)を求め、理論の構造を調べてきた。このフローのリミットサイクルが繰り込まれた軌跡であり、この上で与えられる作用は離散化による影響を持たない改良された作用が求まることが期待されている。このことは古くから知られていたが、QCDに対し近似無しに繰り込み変換を行い、相互作用の変化を調べることはこれまで出来なかった。我々のグループ(QCDTARO)では、Schwinger-Dyson法により2パラメータの場合について実際に繰り込み変換を行い、パラメータ空間での流れを調べた。 これまでに明らかになったのは以下の点である。 1) 2パラメータ空間での繰り込まれた軌跡の兆候が現れた 2) Symanzik型の改良相互作用、Iwasaki型の改良相互作用との関係が明らかになってきた。 3) 強結合展開によって繰り込まれた軌跡の強結合領域での振舞いが理解出来た。 4) 摂動論によって、弱結合領域での振舞いの一部が理解できることが分かった。 5) 摂動論によって非等方格子上の2パラメータ作用を調べ、繰り込まれた非等方性を計算した。現在、非摂動的な振る舞いを調査中である。 Schwinger-Dyson法の係数に強結合展開、摂動計算を適用した上記(3)、(4)は始めての試みであると思われるが、大変有効であることが明らかになった。
|