• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2010 年度 実績報告書

窒化物半導体電界効果トランジスタの劣化機構の解明とその制御

研究課題

研究課題/領域番号 10J00453
研究機関北海道大学

研究代表者

田島 正文  北海道大学, 大学院・情報科学研究科, 特別研究員(DC2)

キーワードAlGaN/GaN / HEMT / current collapse / stability / off-state bias stress
研究概要

デュアルゲート構造を用いてゲートストレス位置がAlGaN/GaN高電子移動度トランジスタ(HEMT)の電流コラプスの振舞いに与える影響を評価した。オフ状態でのゲート電圧ストレスをメインゲートとドレイン電極の間のアディショナルゲートに印加した時、オン抵抗(R_<ON>)の顕著な増大が確認された。一方、メインゲートへのオフ状態ストレスはR_<ON>の増加と同様にドレイン飽和電流の減少を引き起こした。
AlGaN表面の電界計算によって、ドレインとソース側のゲート端に電界集中が存在し、それがAlGaN表面の両側のゲート端領域に電子蓄積を引き起こす可能性があることが示された。これらの結果は、オフ状態ゲートストレスがゲート端からドレインとソースの両方向へ"仮想ゲート"を広げていることを指し示している。また、Al_2O_3を絶縁膜に用いたMOS-HEMTを作製し、表面保護前後のショットキーゲートHEMTとの間の電流コラプスの違いを評価した。表面保護によってショットキーゲートHEMTのオン抵抗の増大は、他の報告と同様に、著しく低減した。一方、MOS-HEMTにおいては、更なる低減が認められた。この原因としては、MOS構造の導入によるゲートリーク電流の低減がMOS-HEMTのAl_2O_3/AlGaN界面への電子注入を抑制している可能性が考えられる。この他に、デバイスシミュレータを用いた電界計算によって、ゲート電極とAlGaN表面がAl_2O_3を挟んで離れていることで、AlGaN表面における電界集中が効果的に抑制されていることが推測され、この電界の抑制によってゲート端からの電子注入が少なくなっている可能性が判明した。以上の結果から、電流コラプスの抑制のために、ドレイン側だけでなくソース側のアクセス領域の考慮が必要であることと、MOS構造は有望なデバイス構造であることがわかった。

  • 研究成果

    (1件)

すべて 2011

すべて 学会発表 (1件)

  • [学会発表] デュアルゲート構造を用いたAlGaN/GaN HEMTの電流コラプスの表面帯電部位依存性の評価2011

    • 著者名/発表者名
      田島正文
    • 学会等名
      電子情報通信学会電子デバイス研究会
    • 発表場所
      機械振興会館
    • 年月日
      2011-01-14

URL: 

公開日: 2012-07-19  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi