• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2001 年度 研究成果報告書概要

保存系の計算数理の総合的研究

研究課題

研究課題/領域番号 11304004
研究種目

基盤研究(A)

配分区分補助金
応募区分一般
研究分野 数学一般(含確率論・統計数学)
研究機関名古屋大学

研究代表者

三井 斌友  名古屋大学, 大学院・人間情報学研究科, 教授 (50027380)

研究分担者 杉原 正顯  名古屋大学, 大学院・工学研究科, 教授 (80154483)
小藤 俊幸  電気通信大学, 電気通信学部, 助教授 (30234793)
小澤 一文  秋田県立大学, システム科学技術学部, 教授 (20100753)
吉田 春夫  国立天文台, 位置天文天体力学研究系, 助教授 (70220663)
前田 茂  徳島大学, 総合科学部, 教授 (20115934)
研究期間 (年度) 1999 – 2001
キーワード数理モデリング / 計算数理科学 / 保存系 / 微分方程式 / 数値解法 / 離散化 / 安定性 / 並列計算
研究概要

時間発展に添って変動する現象の数理モデルを作り,対応する非線型常微分方程式を数値的に解き,表わしている現象をシミュレーションするとき,目標となる現象,特に理工学における現象のなかには,なんらかの保存則(conservation law)を内在し,保存則の再現が決定的な意味をもつ現象がしばしば見られる.典型的な例であるHamilton力学系では,エネルギー,symplectic構造,あるいは角運動量といった保存量が存在することが多く,むしろそうした保存量が力学系を特徴づけるということすら可能である.したがって,これらに対する計算も理想的にはやはり何らかの保存量をもつことが望まれ,あるいは保存量の再現がどの程度の正確さで可能であるかを知ることが,きわめて重要である.保存量の再現が,数値的安定性と緊密に結びついていることは論を俟たない.
このことを念頭にして,非線型常微分方程式の離散近似解アルゴリズム全体の特性を解析し,保存系の観点に立って新たな解法設計の指針をうること,ならびにアルゴリズムの設計・実装にともなう問題点とその解決をめざして,分担者ならびに研究協力者の共同によって多彩な研究活動を展開し成果を収めた.たとえば
Hamilton力学系の保存性およびその数値 解可積分な力学系の十分条件,積分を厳密に再現する離散解法の条件,逆にsymplectic数値解法による第一積分の非保存の条件,周期性を再現するRunge-Kutta-Nystrom schemeの条件などを明らかにした.
保存系に対する離散解法の並列化 Runge-Kutta法をaccross-the-stepの局所的なレベルで,あるいはWaveform Relaxationを通じて大域的なレベルで,並列化を進める観点で,その収束性能・並列化効率などを理論・実践の両面で明らかにした.また,それらの方法のプログラム化にも取り組んだ.
などが挙げられ,さらに以下の項目についても成果を収めた.
変分原理に基づく保存的数値解法,離散近似解の精度保証,時間遅れあるいは確率的要素を含む微分方程式系の離散解法,破壊力学の数理
研究成果は国内外の研究集会において発表されるとともに,学術論文としても多数が発表あるいは掲載予定である.

  • 研究成果

    (7件)

すべて その他

すべて 文献書誌 (7件)

  • [文献書誌] L.Qiu, T.Mitsui: "Stability of the Radau IA and Lobatto IIIC methods for neutral delay differential equations"J. Comput. Appl. Math.. 137. 279-292 (2001)

  • [文献書誌] K.Ozawa: "A Functional fitting Runge-Kutta method with variable coefficients"Japan J. Industr. Appl. Math.. 18. 105-130 (2001)

  • [文献書誌] T.Koto: "Stability of Runge-Kutta methods for delay integro-differential equations"J. Comput. Appl. Math.. (2002)

  • [文献書誌] T.Matsuo, D.Furihata: "Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations"J. Comput. Phys.. 171. 425-447 (2001)

  • [文献書誌] T.Sakajo: "Numerical computations of a three-dimensional vortex sheet in a swirl flow"Fluid Dynam. Res.. 28. 423-448 (2001)

  • [文献書誌] K.Nakagawa, H.Yoshida: "A necessary condition for the integrability of homogeneous Hamiltonian system with two degrees of freedom"J. Phys. A. 34. 2137-2148 (2001)

  • [文献書誌] I.Babuska, P.G.Ciarlet, T.Miyoshi (eds.): "Mathematical Modeling and Numerical Simulation in Continuum Mechanics"Springer-Verlag. 243 (2001)

URL: 

公開日: 2003-09-17   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi