研究課題/領域番号 |
11640073
|
研究機関 | 名古屋工業大学 |
研究代表者 |
足立 俊明 名古屋工業大学, 工学部, 助教授 (60191855)
|
研究分担者 |
大山 淑之 名古屋工業大学, 工学部, 助教授 (80223981)
大塚 富美子 茨城大学, 理学部, 助教授 (90194208)
前田 定廣 島根大学, 総合理工学部, 教授 (40181581)
山本 和広 名古屋工業大学, 工学部, 教授 (30091515)
山岸 正和 名古屋工業大学, 工学部, 講師 (40270996)
|
キーワード | length spectrum / kahler magnetic field |
研究概要 |
大きく分けて、ケーラー磁場による球面平均作用素の考察と対称空間(主として階数1)の円や測地球上の測地線の考察という2方向の研究を行った。 階数1の対称空間内の測地球面上の測地線の長さの分布に関しては、昨年度報告した複素空間系内の測地球上の測地線たちと同じ性質を持つことがわかった。すなわち、これらの対称空間のファイバー構造に付随する不変量により測地線の合同類を分類することができ、対称空間の正則断面曲率をc、測地球の半径を2r/√<c>としたとき 1)tan^2rが無理数であれば合同類はその長さだけで分類できる 2)tan^2rが有理数の場合重複度があり、その重複度の長さに関する上極限は無限大である。 この考察方法を援用して複素空間系上の円の合同類の数の長さに関する漸近挙動を考察した。その挙動はすべての円を対象にすると長さλに関してλ^2logλの速さであり、曲率を指定するとλ^2の速さになることがわかった。 またこれらの考察の過程で四限数空間系内の部分多様体の様子がある程度明らかになったので、その特徴付けをまとめた。 一方、ケーラー磁場に関しては、 1)軌道を利用して平均作用素を定義して、力学系としての磁場の下でのランダムウォークとの関連(特に足の一様分布)を考察したり、 2)磁場付き球面平均作用素のスペクトラムについて、磁力と帯構造との関係を明確にした。
|