• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2002 年度 実績報告書

被覆グラフとその拡張の数え上げ

研究課題

研究課題/領域番号 11640145
研究機関小山工業高等専門学校

研究代表者

佐藤 巌  小山工業高等専門学校, 教授 (70154036)

キーワード皮覆グラフ / 数え上げ
研究概要

本年度は、被覆グラフとその拡張の数え上げについて、明星大学の水野弘文教授と議論しつつ、研究を進めた。被覆グラフの数え上げから少し外れるけれども、前回の科研費補助金基盤研究(C)の目標であった、グラフGの正則被覆グラフ(A-被覆グラフ)の特性多項式の分解公式の応用として、以下の結果を得た。
(1)小谷と砂田が定義した、oriented line graphについて考え、Gの正則被覆グラフ(A-被覆グラフ)のoriented line graphのゼータ関数について、Aの既約表現に関する分解公式を与えた。また、Aの表現についてGのoriented line graphのL-関数を定義し、その行列式表示を求めた。さらに、正則被覆グラフのoriented line graphのゼータ関数を、Gのoriented line graphのL-関数の積で表し、正則被覆グラフのゼータ関数のL-関数による分解公式の別証明を得た。韓国で開かれたシンポジウムにて発表し、そのproceedingsへ投稿中。
(2)正則被覆グラフのゼータ関数を、Gのprime reduced cyclesに関する無限積で表した。また、群の既約表現の性質を用いて、対称的有向グラフDのg-巡回的A-被覆のゼータ関数を、Dのprime cyclesに関する無限積で表した。JP Journal of Algebra, Number Theory and Applicationsに掲載された。
(3)グラフGのarcsに重みを付け、重み付ゼータ関数を定義し、正則被覆グラフの重み付ゼータ関数の分解公式を調べた。Gの重み付L-関数を定義し、その積として、正則被覆グラフの重み付ゼータ関数を表したい。
(4)有向グラフDのarcsに重みを付け、重み付ゼータ関数を定義し、Gの正則被覆グラフのoriented line graphの重み付ゼータ関数の分解公式を考えた。Gのoriented line graphの重み付L-関数を定義し、正則被覆グラフのoriented line graphの重み付ゼータ関数を、Gのoriented line graphのL-関数の積で表したい。

  • 研究成果

    (4件)

すべて その他

すべて 文献書誌 (4件)

  • [文献書誌] 水野弘文, 佐藤巌: "L-functions of graph coverings"JP Journal of Algebra, Number Theory and Applications. 1(3). 235-250 (2001)

  • [文献書誌] 佐藤巌: "Decomposition formulas on zeta functions of graphs and digraphs"JP Journal of Algebra, Number Theory and Applications. 1(3). 217-223 (2001)

  • [文献書誌] 水野弘文, 佐藤巌: "L-functions for images of graph coverings by some operations"Discrete Mathematics. 256. 335-347 (2003)

  • [文献書誌] 水野弘文, 佐藤巌: "Isomorphisms of some regular fourfold coverings"Far East Journal of Mathematical Sciences. (to appear).

URL: 

公開日: 2004-04-07   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi