研究概要 |
(1)研究代表者櫻井はSymplecticな特性集合を持つ偏微分方程式の超局所的性質について研究を行なった.Symplecticな特性集合を持つ作用素をHeisenberg群にモデル化し,その上の調和解析の理論を構築することにより方程式の解が持つ特異性について詳細に調べた. (2)分担者小池は決定論的な状態拘束条件下での効用関数の,対応する一階Bellman方程式の境界条件を特徴付け,その下で効用関数が一意的な粘性解であることを示した. また,制御集合が状態に依存する場合のBellman方程式の解の一意性のための十分条件を示し,その条件が満たされない場合の例をあげた. (3)分担者福井はC^4からC^5への写像芽の特異点の研究,およびToric曲面とニュートン多項式の関係についての研究を行った.
|