• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2000 年度 実績報告書

弦理論の双対性とモジュライ空間の幾何学

研究課題

研究課題/領域番号 11740006
研究機関東京大学

研究代表者

細野 忍  東京大学, 大学院・数理科学研究科, 助教授 (60212198)

キーワード量子コホモロジー / Gromov-Witten不変量 / 有理楕円曲面 / Calabi-Yau多様性 / 弦理論
研究概要

本研究では,複素3次元Calabi-Yau多様体上の正則曲線の数え上げ問題とその母関数について以下の成果を得た.
一般に,正則曲線の数え上げ母関数はholomorphic anomaly equationと呼ばれる漸化式を満たすという予想がCecotti,Bershadsky,Vafa,Ooguriによって提唱されているが,本研究では,K3曲面や有理楕円曲面がCalabi-Yau多様体の因子として含まれる場合に,これらの曲面に着目すると数え上げ母関数が準モジュラー不変性を持ち,さらに特徴的な漸化式を満たすことを見出した.ここで,準モジュラー不変性はこれらのピカール格子に由来するもので,特にピカール格子がE_8格子を含むような(genericな)場合について,アファインE_8ワイル群の対称性を用いて母関数の構造を調べ,レベルが小さいときに具体的な表式が得られた.
また,正則曲線の数え上げ母関数は,連接層(D-brane)のモジュライ空間のオイラー数などと関係することが予想されているが,その数学的な正当化に向けて,幾らかの試みを行ったがこれは完成の途上にある.
正則曲線の数え上げ母関数は,Calabi-Yau多様体の周期積分を与える多変数超幾何級数を用いて具体的に書き表すことが出来る(ミラー対称性).この多変数超幾何級数のモノドロミーを連接層(D-brane)の幾何学に翻訳できると言う予想(ホモロジー論的ミラー対称性)があり,幾らかの肯定的な例を調べた.そして,トーリック多様体内の超曲面の場合に,多変数超幾何級数と連接層(D-brane)の幾何学を結びつける具体的な一般式が得られ,これを予想として提唱した.

  • 研究成果

    (4件)

すべて その他

すべて 文献書誌 (4件)

  • [文献書誌] Shinobu Husono: "Local Mirror Symmetry and Type IIA Monodromy of Calabi-Yau manifolds"Adv.Theor.Math.Phys.. 4(to appear). (2000)

  • [文献書誌] Shinobu Hosono: "Holomorphic Anomaly Equation and BPS state counting of Rational Elliptic Surfaces"Adv.Theor.Math.Phys.. 3. 177-208 (1999)

  • [文献書誌] 細野忍: "ミラー対称性"数学. 51. 257-275 (1999)

  • [文献書誌] 細野忍: "ミラー対称性とGromov-Witten不変量g>1"代数学シンポジウム報告集. 113-120 (1999)

URL: 

公開日: 2002-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi