• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2000 年度 実績報告書

変分問題の大域的研究

研究課題

研究課題/領域番号 11740106
研究機関東京工業大学

研究代表者

磯部 健志  東京工業大学, 大学院・理工学研究科, 助手 (10262255)

キーワード変分問題 / 平均曲率方程式 / Landau-Lifshitz方程式
研究概要

平均曲率一定の曲面を表わすH-systemとLandau-Lifshitz方程式の解空間の構造を調べた.共にある変分問題の解としてとらえることができる偏微分方程式系であるが,これらはあるパラメータが小さい場合にはある有限次元多様体上の変分問題に書き換えることができることを示した.この多様体は考えている問題の対象性を反映しており,その有限次元多様体およびそのうえの得られた変分問題を詳細に調べることによりもとの偏微分方程式系の新しいタイプの解を構成することに成功した.ここで得られた結果からの一つの帰結として,今まで未解決であったH-systemの解の多重性の問題-どのような境界条件の下で3つの解が存在するか-に少なくとも平均曲率が小さい場合には解答を与えることができた.またLandau-Lifshitz方程式に対しても外部磁場が小さい時におこる欠陥現象の数学的証明をあたえ欠陥点の配置を具体的に与える関数を見つけることができた.
以上の結果は2000年度もしくは2001年度に専門雑誌上で発表される予定である.

  • 研究成果

    (3件)

すべて その他

すべて 文献書誌 (3件)

  • [文献書誌] Takeshi Isobe: "Classification of Blow-up Points and Multiplicity of Solutions for H-systems."Communications in Partial Differential Equations. 25・7. 1259-1326 (2000)

  • [文献書誌] Takeshi Isobe: "On the Construction of Solutions for the Landau-Lifshitz Equations."Journal of Differential and Integral Equations. 13. 159-188 (2000)

  • [文献書誌] Takeshi Isobe: "Asymptotic behavior of the Solutions of the Londau-Lifshitz Equations"Advances in Differential Equations. 5. 1033-1090 (2000)

URL: 

公開日: 2002-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi