• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2000 年度 実績報告書

アウスランダーライテン理論における既約加群の役割について

研究課題

研究課題/領域番号 11874006
研究機関大阪大学

研究代表者

宇野 勝博  大阪大学, 大学院・理学研究科, 助教授 (70176717)

研究分担者 山根 宏之  大阪大学, 大学院・理学研究科, 講師 (10230517)
今野 一宏  大阪大学, 大学院・理学研究科, 助教授 (10186869)
臼井 三平  大阪大学, 大学院・理学研究科, 教授 (90117002)
飛田 明彦  崎玉大学, 教育学部, 助教授 (50272274)
脇 克志  弘前大学, 理工学部, 助手 (30250591)
キーワードブロック多元環 / 群環 / アウスランダー・ライテン / 既約加群 / ランク多様体 / 対称群
研究概要

以下の場合に、群環のいわゆるワイルドな表現型をもつブロック多元環上の既約加群は、アウスランダーライテングラフの端に位置することが証明できた。
(1)有限シュバレー群に対し、素数が定義体の標数の場合
(2)有限シュバレー群に対し、素数が定義体の標数でなく、かつ、いわゆるリニアである場合
(3)対称群、交代群とその被覆群の場合
(4)いくつかの散在型有限単純群の場合
しかし、F4型の有限シュバレー群で定義体の標数が2で群環の標数がリニアでないとき、また、ラドバリスの散在型単純群の被覆群のときには、アウスランダーライテングラフの端に位置しない既約加群が存在することも分かった。なお、これらのときは、いずれもその既約加群は、アウスランダーライテングラフにおいて端から2番目の場所に位置する。一方、一般の有限群の場合に有限単純群、あるいは、その被覆群の場合に問題を帰着できることも証明されており、有限単純群の分類定理を用いると上記の結果により一般の場合にも、ほとんどの場合(上の二つの群が関与しない場合)既約加群は、アウスランダーライテングラフの端に位置することが期待できる。
以下の場合に群環のアウスランダーライテングラフの各連結成分における既約加群の個数が高々1個であることが証明できた。
(1)有限シュバレー群に対し、素数が定義体の標数の場合
(2)群のシロー2部分群が可換で素数が2の場合
(3)対称群の場合
また、群環の不足群の位数が4であるブロック多元環について、アウスランダーライテングラフの端に位置し、かつ、剛性をもつ加群の特徴付けを行い、それを用いてこのようなブロック多元環の間の導来同値の再構成を行った。

  • 研究成果

    (5件)

すべて その他

すべて 文献書誌 (5件)

  • [文献書誌] Shigeto Kauata,Gerhard Mrchler,Katsuhiro Uno: "On simple modules in the Auslander-Reiten components of finite groups"Math.Zeitschrift. 234・2. 375-393 (2000)

  • [文献書誌] Shigeto Kauata,Gerhard Mrchler,Katsuhiro Uno: "On Auslander-Reiten components and simple modules for finite groups of Lie type"OsakaJ.Math.. 38・1. 1-6 (2001)

  • [文献書誌] C.Bessenrodt,Katsuhiro Uno: "Character Relations and simple modules in the Auslander-Reiten graph of the symmetric groups and their covering groups"Algebra and Representation Theory. (発表予定).

  • [文献書誌] Tetsuro Okuyama,Katsuhiro Uno: "On the vertices of modules in the Auslander-Reiten quiver, III"Advances in Math.(Kinokuniya). (発表予定).

  • [文献書誌] Naoko Kunugi,Katsushi Waki: "Derived equivalences for the 3-dimensional special unitary groups in non-defining characteristic"J.of Algebra. (発表予定).

URL: 

公開日: 2002-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi