研究課題/領域番号 |
12440046
|
研究機関 | 東京大学 |
研究代表者 |
時弘 哲治 東京大学, 大学院・数理科学研究科, 教授 (10163966)
|
研究分担者 |
國場 敦夫 東京大学, 大学院・総合文化研究科, 助教授 (70211886)
岡本 和夫 東京大学, 大学院・数理科学研究科, 教授 (40011720)
薩摩 順吉 東京大学, 大学院・数理科学研究科, 教授 (70093242)
樋上 和弘 東京大学, 大学院・理学系研究科, 助手 (60262151)
武部 尚志 お茶の水女子大学, 理学部, 助教授 (60240727)
|
キーワード | 超離散系 / 可積分系 / セルオートマトン / 可解格子模型 / クリスタル / トロピカル |
研究概要 |
本年度の研究実績は、以下のとおりである。 (1)周期的な超離散系の初期値問題を考察し、もっとも単純な箱玉系(A_1^{(1)}オートマトン)に対して、逆超離散化を用いて周期的離散戸田格子の初期値問題に対応付け、周期的離散戸田方程式の初期値問題を解くことによって、一般的に初期値問題を解くことができることを示した。楕円関数解に対応するケースについて、初期値の明示的な表式を得、基本周期を決定した。 (2)(1)で考察した周期系に対して、基本周期を組み合わせ論的な手法によって厳密に決定した。さらに、その時間発展がブール代数を用いて表現できること、ブール代数、組み合わせ論的R行列との関係を明らかにした。 (3)B, C, D型のクリスタルから構成される超離散系について、その時間発展がワイル群の作用の積として表示できることを示した。その作用を、箱と玉の力学系として明示的に表現した。 (4)超離散系のシンメトリーについて考察し、対応する非線型可積分方程式のシンメトリーとの対応関係を明らかにした。超離散系のLax表示が、超離散戸田方程式などでは具体的に得られることを示した。 (5)可積分超離散系を半体から体へ逆超離散化した系(トロピカル)の数理構造を研究し、トロピカルにおける時間発展もワイル群の構造をもつことを示した。
|