• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2000 年度 実績報告書

正標数の代数幾何と符号・暗号理論の研究

研究課題

研究課題/領域番号 12554001
研究機関東京大学

研究代表者

桂 利行  東京大学, 大学院・数理科学研究科, 教授 (40108444)

研究分担者 加藤 晃史  東京大学, 大学院・数理科学研究科, 助教授 (10211848)
寺杣 友秀  東京大学, 大学院・数理科学研究科, 助教授 (50192654)
岡本 和夫  東京大学, 大学院・数理科学研究科, 教授 (40011720)
岡本 龍明  NTT, 情報流通プラットフォーム研究所, 特別研究員
高山 信毅  神戸大学, 理学部, 教授 (30188099)
キーワード正標数 / 形式的ブラウワー群 / カルチエ作用素 / モジュウイ空間 / チャウ群 / 公開鍵暗号 / 量子計算機 / NP問題
研究概要

研究代表者は,岡本龍明(NTT)を客員教授に迎え連携併任講座「符号暗号」をオーガナイズし,標題の研究をおこなった.Aを正標数の代数的閉体k上のアーベル曲面とし,Φ_AをAの形式的Brauer群,hをΦ_Aの高さとする.よく知られているように1【less than or equal】h【less than or equal】2またはh=∞である.Z_1をd閉1形式としCをZ_1で定義されたCartier作用素とする.層Z_iをKer dC^<i-1>として帰納的に定義する.Mをレベルl(l【greater than or equal】3)構造を持つ主偏極アーベル曲面のモジュライ空間,π:A→Mをその普遍族とする.υ=π_*Ω<2【chemical formula】/M>とおけば,これはMのChow群の元を与える.M^<(h)>={A∈M|height Φ_A【greater than or equal】h}とおく.このとき,M=M^<(1)>⊃M^<(2)>⊃M^<(∞)>となる.x∈Mを(A,D,σ)に対応する点とし,Im H^1(A,Z_h)を自然な単射Z_h→Ω<1【chemical formula】>から誘導された準同型写像H^1(A,Z_h)→H^1(A,Ω^1_X)の像とする.これらの記号の下に,Φ_Aの高さh<∞のとき,Im H^1(A,Z_h)=7-hが成立する.M^<(h)>のxにおける接空間は{Im H^1(A,Z_h)}∩D^⊥⊂H^1(A,Ω<1【chemical formula】>)と同型であることが示せる.とくに,M^<(h)>の次元は,dim M^<(h)>=20-hとなり,Chow群CHl^1_Q(M)におけるM^<(2)>の類は(p-1)υで与えられる.最後の部分は結果としては知られていたが,我々は新しい枠組みでの定式化をおこなった.この枠組みにおいてはM^<(∞)>にスキームの構造を自然に入れることができ,そのスキームがnon-reducedな構造を持つがわかる.また,岡本龍明は,量子計算機の利用を前提とした「量子公開鍵暗号」という新しい暗号の概念を提案した.将来量子計算機が実現されれば,現在使われている公開鍵暗号のほとんどは解読される.この問題を解決することは応用上重要であり,岡本の提案はNP困難問題である部分和問題に基づき代数的整数論を用いて,その具体的な構成を行うものである.

  • 研究成果

    (5件)

すべて その他

すべて 文献書誌 (5件)

  • [文献書誌] G.vander Geer & T.Katsura: "On a stratification of the moduli of K3 surfaces"J.Eur.Math.Soc.. 2. 259-290 (2000)

  • [文献書誌] G.vander Geer & T.Katsura: "Formal Brauer groups and a stratificatin of the moduli of abelian surfaces"to appear in Proc.of Intl.Conf.in Texel,1999.

  • [文献書誌] 桂利行: "デジタルの数学"数学のたのしみ. 21. 54-65 (2000)

  • [文献書誌] T.Terasoma: "Convolution theorem for non-degenerate maps and composite singularities"J.Algebraic Geometry. 9. 265-287 (2000)

  • [文献書誌] E.Fujisaki & T.Okamote: "Achosen-Cipher Secure Encryption Scheme Tightly as Secure is Factoring"IEICE Transactions. E84-A-1. 179-187 (2001)

URL: 

公開日: 2002-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi