研究概要 |
酸化物をマトリックスとする焼結SiC繊維強化複合材料の製造プロセス、および機械的性質に関する検討を行った。製造プロセスとしては、溶融含浸法、スラリー含浸法、ともに可能であり、繊密なマトリックスを得ることが出来た。Al2O3-YAGマトリックスの場合は、1300℃での曲げ強度が780MPaであり常温の破壊エネルギーも14000J/m2に達した。しかし、界面強度調整のためのグラファイトの酸化問題と、強化繊維とマトリックスの線膨張係数の違いによるクラックの発生が問題となった。 高温でプリフォーム中に酸化物を溶融含浸させるプロセスで作製したガラス+ムライトマトリックスの場合は、常温で曲げ強度1GPa,1300℃での曲げ強度が500MPa,常温破壊エネルギーは50000J/m2が得られている。線膨張係数の違いによるクラックはない。グラファイトを界面強度調整に用いた。酸化物に覆われているが、高温での酸化はまぬがれなかった。それゆえ、CVD-BNコーティングヘの変更を実施した。窒素分圧を最適化することでコーティング膜の分解を抑制できた。残留応力状態は、マトリックス中のムライトの晶出量、すなわち、組成によって制御できることを、FEM解析およひプッシユアウト法で確認した。SiC強化繊維の線膨張係数は、シリカガラスとムライトの線膨張係数の間に存在する。それゆえ、ムライトの体積率を制御することで、複合材料中の残留応力を制御することができたものと考えられる。高温強度を向上させるためには、ムライトの体積率が大きい方が有利と予想されるため、50モル%アルミナ組成で複合材料を作製した。1650℃、30MPa,3.6ksecのホットプレス条件では、十分に繊密な組織が得られた。ホットプレス温度が1700℃になると、繊維が損傷を受けることが分かっている。従って、より高い圧力での複合材料作製を検討している。
|