• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2000 年度 実績報告書

Ritz有限要素法に対する誤差解析

研究課題

研究課題/領域番号 12640128
研究機関愛媛大学

研究代表者

土屋 卓也  愛媛大学, 理学部, 助教授 (00163832)

研究分担者 方 青  愛媛大学, 理学部, 助手 (10243544)
山本 哲朗  愛媛大学, 理学部, 教授 (80034560)
キーワード有限要素法 / 数値解析学 / 誤差評価
研究概要

本年度は,Ritz有限要素法について,いくつかの研究を行った.
まず,単位円から2次元のEuclid空間内のJordan領域への等角写像の有限要素近似について解析を行った.適当な有限要素空間とその中のadmissibleな写像の集合上で,ある汎関数(Dirichlet積分である)を極小にするものを有限要素等角写像と定義した.従来注意されていなかった,領域内の一点の対応が指定された場合について,有限要素等角写像の境界上での同程度連続性を示し,それを使って真の等角写像への収束を示した.多くの数値例を与え,有限要素等角写像の有用性を示した.
次に,有限要素法の代わりに境界要素法を使っても,単位円上で定義されたparametricな極小曲面,等角写像がうまく近似できることを示した.さらに,使っている境界要素法がDirichlet積分を近似する能力があれば(ほとんどすべての場合,近似能力はある),境界要素極小曲面,境界要素等角写像は,真の解に収束することを示した.等角写像の場合は,境界要素法を使い,円の外部領域上の等角写像を近似できることを示した.
極小曲面は,平均曲率が至るところ0となる曲面であるが,平均曲率が至るところ定数になる曲面(しばしばH-surfaceと呼ばれる)の有限要素近似を考えた.この場合,3次元のEuclid空間内に与えられたJordan曲線内に張るH-surfaceは,少なくとも2つあることがわかっているが,今回そのうちの小さい方の解(small solutionと呼ばれる)の有限要素近似を定義し,それの真の解への収束を示した.

  • 研究成果

    (3件)

すべて その他

すべて 文献書誌 (3件)

  • [文献書誌] N.Matsunaga,T.Tsuchiya: "Non-differentiable finite element approximations for parametrized strongly nonlinear boundary value problems"Advan.Math.Sci.Appl.. Vol.10. 443-465 (2000)

  • [文献書誌] T.Tsuchiya: "Finite element approximation of conformal mappings"Numer.Func.Anal.Optimiz.. (in press).

  • [文献書誌] T.Tsuchiya: "Finite element analysis for parametrized nonlinear equations around turning points"J.Comp.Appl.Math.. (in press).

URL: 

公開日: 2002-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi