• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2001 年度 実績報告書

非線形常微分方程式の漸近解析、およびその偏微分方程式への応用

研究課題

研究課題/領域番号 12640179
研究機関広島大学

研究代表者

宇佐美 広介  広島大学, 総合科学部, 助教授 (90192509)

研究分担者 柴田 徹太郎  広島大学, 総合科学部, 助教授 (90216010)
水田 義弘  広島大学, 総合科学部, 教授 (00093815)
吉田 清  広島大学, 総合科学部, 教授 (80033893)
内藤 雄基  神戸大学, 工学部, 助教授 (10231458)
内藤 学  愛媛大学, 理学部, 教授 (00106791)
キーワード常微分方程式 / 準線形方程式 / 高階常微分方程式 / 楕円型方程式 / 固有値問題 / 漸近解析
研究概要

数理科学に現れる種々の微分方程式の解の定性的性質が解明出来た。主な結果は次である:
1.Emden-Fowler型方程式の一般化である2階準線形常微分方程式の正値解の漸近挙動を解明した。特に正値解の漸近公式を精密な形で得ることが出来た。応用上重要な非線形項が特異性を持つ場合には減衰正値解について一意性等さらに精密な結果を得ることが出来た。この応用として、比較定理を援用してある種の準線形楕円型境界値問題が正値解を持つための十分条件を得た。
2.Emden-Fowler型方程式の一般化である4階準線形常微分方程式や更にその一般化である連立常微分方程式系を考察し、その正値解の漸近挙動の解明、及び解の振動定理を得た。また比較定理とこれの応用として、ある種の半線形楕円型偏方程式系が無限遠点の近傍での正値解を持たないための十分条件を得た。
3.半線形固有値問題を種々の拘束条件下で考察し、(変分)固有値と固有関数の漸近的性質、固有関数の形状の漸近的状態、特に固有関数のL-2ノルムの漸近展開式を解明した。
4.パラメータ付き高階線形常微分方程式の非振動解の零点の個数がパラメータの変化にともないどのように変化するのかを考察した。部分的ではあるが、よく知られている2階Sturm-Liouville型固有値問題と類似の結果を得た。
5.走化性を有する粘菌類の増殖過程を記述する偏微分方程式系の解の定性的性質を明らかにした。特にその自己相似解に重点を置いて考察した。自己相似解はある楕円型方程式の解となるが、それが球対称となることが分かった。そのことと、3の結果などを用いて解のパラメータに対する変化の様子を調べることが出来た。

  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] ken-ichi Kamo: "Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity"Hiroshima Math.J.. 31-1. 35-49 (2001)

  • [文献書誌] Masatsugu Mizukami: "Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations"Hiroshima Math.J.. (印刷中).

  • [文献書誌] Manabu Naito: "On the number of zeros of nonoscillatory solutions to higher-order linear ordinary differential equations"Monatshefte fur Mathematik. (印刷中).

  • [文献書誌] Yuki Naito: "Self-similar solutions to a parabolic system modeling chemotaxis"J.Differential Equations. (印刷中).

  • [文献書誌] Yoshihiro Mizuta: "Boundary limits of functions in weighted Lebesgue or Sobolev classes"Revue Roumaine Math.Pures Appl.. 46. 67-75 (2001)

  • [文献書誌] Tetsutaro Shibata: "Precise spectral asymptotics for the Dirichlet problem-u"(t)+g(u(t))=λsinu(t)"J.Math.Anal.Appl.. (印刷中).

URL: 

公開日: 2003-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi