研究概要 |
古典力学の研究における基本問題の一つに「具体的に与えられたハミルトン系が可積分か否かを判定すること」がある.ハミルトン系が可積分であるとは,運動方程式の一般解を解析的に求めることができることを意味する.例えば万有引力で相互作用する2質点の運動を記述する2体問題は可積分であるが3体問題は可積分でない.自由度nのハミルトン系の場合,非自明で最も簡単な場合が自由度2の場合であるが,この場合に限っても現在のところ,あるアルゴリズムによって可積分性を判定するという基本問題は解決されていない.本研究はそのような可積分性のより強力な判定条件を求め,可積分なハミルトン系のリストを得ることを目的とする.本年度の主結果は速度$p_1,p_2$について3次および4次の第一積分を持つ全ての多項式ポテンシャルを列挙することに成功したことである.速度$p_1,p_2$について2次以下の第一積分を持つ条件は前世紀末にベルトラン・ダルブーによって得られているが,これはその自然な拡張である.
|