過飽和蒸気相からはいろいろのサイズの液滴が生ずるが臨界核サイズより大きな核が出来れば核は成長する。この臨界核サイズの大きさとその時の自由エネルギーの大きさが液滴の成長速度を決める最も重要な因子である。しかし、古典的な理論ではこれらの大きさを合理的に見積もることに必ずしも成功していないのでシミュレーションの方法が重要となる。分子動力学法で泰岡-松本は液滴成長の様子をシミュレートし、その解析から臨界核サイズとその時の自由エネルギーを見積もった。 こうした状況で我々は一定体積のもとでのメトロポリス法のカノニカルモンテカルロ法を使用した。ヘルムホルツ自由エネルギーが扱いやすいからである。密度は過飽和蒸気相に相当する値を採用し、低温で安定なクラスターを作成する。この系の温度を上げるとやがてクラスターは壊れる。この現象はクラスター相からモノマー相への相転移と見なすことが出来る。一方、系の温度を上げるときのモンテカルロサンプリングにおいて、クラスターが壊れることを禁止すると、モノマー相が出来ず、いわば高温のクラスター相をシミュレート出来る。この考えに基づいて系の平均ポテンシャルエネルギーを温度の関数として決め、それを使って熱力学的積分で低温度からのエントロピー差を見積もって、ヘルムホルツ自由エネルギーを計算した。これから高温でモノマー相からクラスター相へ変化したときの自由エネルギーを見積もった。 選られた臨界核サイズは30-40程度となり、この値は泰岡-松本の解析結果と対応している。臨界自由エネルギー差については、過飽和度の違いから直接の比較は出来ないがわれわれの値の方が大きく出ている。 また、レナード・ジョーンズ液体と固体の間の相転移をエントロピーサンプリングモンテカルロ法で調べた。相転移温度や転移に伴うエントロピーの飛びを見積もることができた。
|