研究実績の概要 |
非可換岩澤理論においては, 様々な人々の努力によって岩澤主予想が定式化されている. より詳しくは, ある代数体K上のあるモチーフ及びガロア群Gal(L/K)がp進Lie群となるある拡大L/Kが与えられたとき, 代数側では非可換岩澤代数のK群を使ったSelmer群の特性イデアルの非可換版が定義され, 解析側では非可換岩澤代数のK群の中のp進L函数の存在予想などが定式化されている. 解析側ではp進L函数の補間性質をみると対称変換に関する函数等式が成り立つであろうことが期待される. 解析的なp進L函数の構成は繊細で難しい問題なのでp進L函数の存在が示されていない場合も多いが, もし岩澤種予想が成り立つならば代数側のSelmer群に対しても対応する函数等式が成り立つはずである. Selmer群に対する函数等式は, 岩澤主予想の状況証拠にもなり, 技術的にも面白い問題である. 岩澤主予想を仮定せずにこれを示したい. 可換のときには現れなかったコントロール定理の誤差やK群の取り扱いの問題などいくつか細かい克服すべき課題がある. 今年度はL/Kがfalse Tate拡大の場合にほとんどの部分的な問題をクリアーした. 繰越における本研究において4月に大阪大学に招聘した三浦氏との議論, 6月に東京理科大学を訪れて行った八森氏との議論を通して定式化や結果が改良された. そのような改善点も取り入れながら論文をまとめている最中である. その後, その論文の応用として函数等式を示す予定である.
|