(1)量子力学的な粒子と量子場が相互作用する系であるディラック方程式に従う粒子とクライン・ゴルドン場が相互作用する系のハミルトニアンの本質的自己共役性について考察を行った。この系のハミルトニアンはクライン・ゴルドン場に紫外切断条件を課すことで、C^4値-二乗可積分の空間とボソンフォック空間のテンソル積ヒルベルト空間上の対称作用素として定義される。主定理において、粒子のポテンシャルに関するある条件の下で、系のハミルトニアンがある部分空間上で本質的に自己共役となることを示した。 (2)量子場と量子場が相互作用する系である相対論的量子電磁力学の系の基底状態の存在について考察を行った。相対論的量子電磁力学の系とはフェルミ場であるディラック場とボーズ場である量子輻射場が相互作用する系である。この系のハミルトニアンはディラック場および量子幅射場に紫外切断条件を課し、また摂動の作用素に空間切断条件を課すことで、フェルミオン・ボソンフォック空間上の下に有界な自己共役作用素となることが示される。主定理において、量子輻射場に関する赤外切断条件の下で、任意の結合定数において多重度が有限な基底状態が存在することを示した。 (3)masslessクライン・ゴルドン場が4次の自己相互作用をする系であるmasslessΦ^4モデルの基底状態の存在について考察を行った。この系のハミルトニアンはクライン・ゴルドン場に紫外切断条件を課し、また摂動の作用素に空間切断条件を課すことで、ポソンフォック空間上の下に有界な自己共役作用素となることが示される。主定理においてクライン・ゴルドン場に関する赤外切断条件の下で、任意の結合定数において多重度が有限な基底状態が存在することを示した。
|