• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2001 年度 実績報告書

ネヴァンリンナ理論の離散化にむけて

研究課題

研究課題/領域番号 13304003
研究機関名古屋大学

研究代表者

小林 亮一  名古屋大学, 大学院・多元数理科学研究科, 教授 (20162034)

研究分担者 谷川 好男  名古屋大学, 大学院・多元数理科学研究科, 助教授 (50109261)
金銅 誠之  名古屋大学, 大学院・多元数理科学研究科, 教授 (50186847)
浪川 幸彦  名古屋大学, 大学院・多元数理科学研究科, 教授 (20022676)
山ノ井 克俊  京都大学, 数理解析研究所, 助手 (40335295)
内藤 久資  名古屋大学, 大学院・多元数理科学研究科, 助教授 (40211411)
キーワードディオファントス幾何学 / 正則曲線 / 値分布論 / Vojta予想 / 第2主要予想 / 対数微分の補題
研究概要

ディオファントス方程式の有理数解や整数解の存在・非存在,存在するとしたらどのくらい存在するかという問題とそれに関連する問題を定量的に論じる数学を,近年ではディオファントス幾何学と呼ぶ.幾何学と呼ぶ理由は,数学の多岐にわたる分野が幾何学的に統合されて初めて理解し得る数学だからである.本基盤研究はディオファントス幾何学における大予想であるVojta予想を解決することを最終目標とするものである.私のアプローチは,正則曲線の値分布論をVojta予想の幾何学モデルと位置づけ,値分布論をディオファントス幾何的現象であるという作業仮説のもと,Vojta予想とその値分布論的アナログである第2主要予想の両方を同時に説明しきる力をもつような幾何学を構築する試みを通じて両予想を根本的に理解しようというものである.本年の発見は以下のようである:
(a)両予想にまたがる基本的枠組みとして「多項式線形性」という概念を見つけた.
(b)「多項式線形性」の概念によって,カラビヤウ空間や一般型代数多様体の特殊部分多様体が「隠れたディオファントス近似の対象」として特徴づけられる.
(c)「多項式線形性」を導入することにより「ジェットの散乱」という困難が生じる.
(d)本研究の前の基盤研究において私が発見した「射影的対数微分の補題」は深い解析に由来するものの,値分布論においてどのような働きをするのかよくわからなかった.今回,これが(c)の困難を解決するものであることがわかった.
以上の発見によって予想の解決は「ある種の特異性をもつ積分幾何の正当化する問題」に煮詰まった.しかしこの問題は類似した問題が見つからない,非常に考えづらい問題である.引き続きこの路線で予想解決にせまりたいと思う.

  • 研究成果

    (7件)

すべて その他

すべて 文献書誌 (7件)

  • [文献書誌] M.Henmi, R.Kobayashi: "Hooke's Law in statistical Manifelds and Divergences"Nagoya Math. J.. 159. 1-24 (2000)

  • [文献書誌] R. Kobayashi: "Holomorphic Curves in Abelian Varieties : ・・・・・"Japanese J. of Math.. 26-1. 129-152 (2000)

  • [文献書誌] R. Kobayashi: "Methods of Integral Geometry in Nevanlinna Theory, Lemma on Logarithmic Derivative and a Program toward Second Main Theorem"Sugaku Expositions. (in press). 1-42 (2002)

  • [文献書誌] R. Kobayashi: "Nevanlinna's Lemma on Logarithmic Derivative and Integral Geometry"Nagoya Math. J.. (to appear).

  • [文献書誌] R. Kobayashi: "Meromorphically Parameter Dependent Integral Geometry and Lemma on Log. Der. in Nevanlinna/Diophantus Calculus"2001幾何学シンポジウム,講演予稿集. 1-30 (2001)

  • [文献書誌] 小 林 亮 一: "変種Weitzenback公式としての第2主要予想"竹内勝先生メモリアル. (阪大数学レクチャーノートから出版予定). 1-40 (2002)

  • [文献書誌] 小林亮一: "リッチフラット計量の幾何学と解析学"培風館(出版予定). 500

URL: 

公開日: 2003-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi