研究課題/領域番号 |
13304011
|
研究種目 |
基盤研究(A)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
大域解析学
|
研究機関 | 北海道大学 |
研究代表者 |
小澤 徹 北海道大学, 大学院・理学研究科, 教授 (70204196)
|
研究分担者 |
中村 玄 北海道大学, 大学院・理学研究科, 教授 (50118535)
堤 誉志雄 京都大学, 大学院・理学研究科, 教授 (10180027)
林 仲夫 大阪大学, 大学院理学研究科, 教授 (30173016)
中西 賢次 名古屋大学, 大学院・多元数理科学研究科, 助教授 (40322200)
高岡 秀夫 神戸大学, 理学部, 助教授 (10322794)
|
研究期間 (年度) |
2001 – 2003
|
キーワード | 非線型波動方程式 / 非線型ディラック方程式 / 非線型クライン・ゴルドン方程式 / 非線型シュレディンガー方程式 / 散乱理論 |
研究概要 |
本研究では、非線型シュレディンガー方程式やKdV方程式を始めとする非線型分散方程式、非線型波動方程式や非線型クライン・ゴルドン方程式を始めとする非線型双曲型方程式、および非線型ディラック方程式の様な方程式系について、相互作用の幾何学的・解析学的研究を通して、解の様々な時空大域的振舞いを解明する事が出来た。 非線型シュレディンガー方程式では、空間3次元、反撥型非線型項の下でエネルギー散乱の漸近完全性を証明した。データが小さい場合の散乱理論については、空間次元、ソボレフ指数、非線型項の斉次冪の三者間の成す臨界等式の下で成立する事が、非線型シュレディンガー方程式の場合には良く知られていたが、本研究では斉次冪でない場合にも拡張できる事を示した。この考え方を推し進めて、小さなデータで非斉次相互作用の場合の散乱理論を非線型波動方程式、非線型クライン・ゴルドン方程式、非線型シュレデインガー方程式、非線型ディラック方程式について、統一的に論じる事に成功した。 本研究では、シュレディンガー方程式の様な非相対論的方程式を相対論的方程式の光速無限大に於る極限方程式と見做す為の数学的基礎づけも行なった。特にクライン・ゴルドン複素スカラー場に位相変調とスケール変換を施し光速を無限大にした場がシュレディンガー場である事をエネルギー空間H^1(R^3)の枠組で証明した。同様な試みは、ディラック場でH^3(R^3)【cross product】C^4(s>1)の枠組で完成したが、臨界の場合(s=1)ではどうなるのか現在の所不明である。 また、スケール不変性を持つ波動場は、ミンコフスキ空間で特別な幾何学的特徴を持っているが、解析的には原点、無限遠点、光錐曲面上の特異性によりその取扱いが大変困難であった。本研究では、その困難を時空の重み付き弱ルベーグ空間を導入する事で効率的に制御する事が出来た。
|