• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2002 年度 実績報告書

複素空間型の部分多様体の研究

研究課題

研究課題/領域番号 13640061
研究機関千葉大学

研究代表者

高木 亮一  千葉大学, 理学部, 教授 (00015562)

研究分担者 関川 浩永  新潟大学, 理学部, 教授 (60018661)
杉山 健一  千葉大学, 理学部, 助教授 (90206441)
稲葉 尚史  千葉大学, 理学部, 教授 (40125901)
東條 晃次  千葉工業大学, 自然系, 講師 (30296313)
塚田 和美  お茶の水女子大学, 理学部, 教授 (30163760)
キーワード複素空間型 / 実超曲面 / 等長変換群 / 軌道 / 主曲率 / モデル空間 / 合同 / 分類
研究概要

双曲型複素空間型Mの実超曲面NがMの等長変換群のリー部分群Gによる軌道として与えられているとき、これを分類するという問題を考察し、次のような成果を得た。
1.Nの主曲率ベクトルは、重複度が2以上ならば、Mの複素構造で写してもNに接したままである。
2.Nの主曲率と誘導された概接触構造とMの接続形式の間に成り立つ新しい公式が見つかった。
3.Berndtによって与えられた二つのモデル実超曲面をB, Cとし、対応するリー部分群をそれぞれH, Iとするとき、BとCの等長変換群がわかった。
4.同じリー部分群の軌道でも実超曲面になるときとならないときがある。そのことを主曲率に関して記述することができた。これにより、B, Cのうち一方の軌道は常に実超曲面になることがわかる。それをBとしよう。
以上の命題を用いて、さらに構造方程式を詳しく調べて、次を得た。
定理。上の設定の下で、Mに次のような開集合Uがあると仮定する。すなわち、Uの点点を通るGによる軌道はすべて3個の主曲率をもつ実超曲面になるとする。このとき、Nはよく知られたモデル実超曲面かBに合同になる。
公式を用いて、Iによる軌道のなかには二つだけ実超曲面にならないものがあること、および実超曲面になるものはすべて3個の主曲率をもつことがわかる。したがって、定理においてUの存在を仮定しないと、同じ結論を得られないことがわかる。同時に、その過程を取り除くことが次の自然な問題であることもわかる。

  • 研究成果

    (4件)

すべて その他

すべて 文献書誌 (4件)

  • [文献書誌] T.Inaba, H.Nakayama: "Invariant fiber measures of angular flows and the Ruelle invariant"J. Math. Soc. Japan. 55-4未定(掲載確定). (2003)

  • [文献書誌] H.Hashimoto, K.Mashimo, K.Sekigawa: "On 4-dimensional CR-submanifold of a 6-dimensional sphere"Adv. Studies Pure Math.. 34. 143-154 (2002)

  • [文献書誌] K.Tsukada: "Curvature homogeneous spaces whose curvature tensors have large Symmetries"Comment. Math. Univ. Carolinae. 43. 283-297 (2002)

  • [文献書誌] K.Tojo: "Totally real totally geodesic submanifolds of a compact 3-symmetric Spaces"Tohoku Math. J.. 53. 131-143 (2001)

URL: 

公開日: 2004-04-07   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi