研究概要 |
(1)滑らかさの正則性のない積分核から定義されるCalderon-Zygmund型の特異積分とLittlewood-Paley関数に対してウェートつきの弱(1,1)評価が得られた。(2)ある種のLittlewood-Paley関数に対して,ウェートつきのHardy空間上での弱・強評価が得られた。さらに一般化されたBochner-Riesz作用素,球面平均作用素に対するいくつかのウェートつきの評価とその応用が得られた。(3)ある種の擬微分作用素のウェートつきのL^2有界性,H^1-L^1有界性に対して表象の満たすべき滑らかさの正則性に関する条件が改良された。(4)変化する回転面に付随した特異積分のL^P有界性を示した.この場合特異積分の積分核の斉次部分にはH^1条件とcancellation条件を仮定する.また,この特異積分に付随したある種のmaximal functionのL^q有界性も仮定されている。(5)滑らかさの正則性のない積分核から定義されるある種の多重線形Littlewood-Paley作用素のL^P有界性を示した.この応用として,より広範の多重線形Fourier multiplier作用素のL^P有界性が示される事になった。(6)積分核に単位球面上でLlog L条件を仮定すると,これにより定義されるMarcinkiewicz関数がweak(1,1)評価を満足することを示した。(7)n次元Euclid空間とトーラス上のL^P空間,Hardy空間に作用する多重線形作用素間のトランスファランス定理とその応用が示された.(8)n次元Euclid空間とトーラス上のLittlewood-Paley関数のL^p評価,弱L^p評価,H^p-L^p評価,H^P-弱L^P評価等の評価間のトランスファランス定理とその応用が示された。(9)滑らかさの正則性のない積分核から定義される,回転面に付随した特異積分とLittlewood-Paley関数が研究された.
|