• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2001 年度 実績報告書

代数曲線の数論的基本群と逆ガロア問題

研究課題

研究課題/領域番号 13740009
研究種目

奨励研究(A)

研究機関京都大学

研究代表者

玉川 安騎男  京都大学, 数理解析研究所, 教授 (00243105)

キーワード代数曲線 / 基本群 / 被覆 / 正標数 / Grothendieck予想 / Prym多様体 / Torelli問題 / gonality
研究概要

研究目的「正標数の体の上の代数曲線の幾何的基本群の構造、特に、正標数代数閉体上の代数曲線に関するGrothendieck予想」に関して、Pop-Saidi及びRaynaudにより、有限体の代数閉包の上の双曲的代数曲線に関する弱いGrothendieck型予想(同型な基本群を持つ曲線の同型類の有限性)の成立が、いくつかの比較的強い条件の下で証明されていたが、昨年度末にそれらの条件を外すことに成功し、一般的な定理を得た。今年度は、この結果を論文に執筆しほぼ完成に至ったが、その途中で種種の関連する結果が得られた。特に、研究目的「局所体の上の代数曲線の数論的基本群の構造、特に、基本群とその商における惰性群の作用の様子」に関して、正標数局所体の上の代数曲線の(tame)基本群のspecialization mapの非同型性や、外monodromy表現の非自明性が得られたのは興味深い。また、証明の道具として開発した、一般化されたPrym多様体に対する局所Torelli問題や曲線の被覆のgonalityの(下からの)評価などは、基本群の研究だけでなく、純に曲線の代数幾何に関する結果としても有用であると期待している。強いGrothendieck型予想については、種数0の場合には以前に既に示すことができていたが、一般の場合には、全く手付かずである。今回の弱いGrothendieck型予想の完全解決を足掛かりにして、来年度以降は、強い予想の証明に取り組みたい。
また、研究目的「大域体の上の代数曲線の数論的基本群の構造、特に、無限次代数体上の代数曲線に関するGrothendieck予想」については、フランス、韓国、日本での研究発表の機会に、現時点で得られている結果を整理することができた。上記の弱い予想に関して同様な結果が得られるかは来年度以降の課題である。
最後に、研究目的「大域体の上の代数曲線の数論的基本群の構造、特に、1、2の研究を基にした逆Galois問題へのアプローチ」については、(今年度も散発的に考えてはいたが)来年度以降本格的に取り組みたい。

  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] Hiroaki Nakamura, Akio Tamagawa, Shinichi Mochizuki: "The Grothendieck Conjecture on the Fundamental Groups of Algebraic Curves"Sugaku Expositions. 14, No.1. 31-53 (2001)

  • [文献書誌] Akio Tamagawa: "Ramification of torsion points on curves with ordinary semi-stable Jacobian varieties"Duke Mathematical Journal. 106, No.2. 281-319 (2001)

URL: 

公開日: 2003-04-03   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi