研究概要 |
今年度は研究計画と昨年度の研究成果に基づき、次のような研究を行った。 昨年度開発を行った空間2次元および3次元での反応拡散系に対するアダプティブメッシュ有限要素法を用いた汎用プログラムを改良し、任意の数の変数への対応を可能にした。更にそれを用いて、例えばGray-Scottモデルの自己複製パターンのようにパターンが空間領域全体をより密に覆い尽くす問題に対して、アダプティブFEMを用いた数値計算を行い節点数の圧縮率や、計算時間においてアダプティプFEMの有効性について確認したところ、空間一様メッシュ分割の計算時間を上回る事ができる圧縮率を実現する事ができた。我々の当初の考えでは,自己複製パターンのような密なパターンにおいては、アダプティブFEMが有効に働かないという予想があったが、実際に計算を行ってみると、疎なパターンと比べては圧縮率は低くなるものの、アダプティブFEMは節点数や計算時間において有効である事が明らかになった。 この結果から、今まで我々が考えて来た解の空間局在性という概念を見直し、数量的な定義を行う必要性を感じた。そこでこれまで感覚的な指標であった「解の空間局在性」の数量化の試みとして、解の有界変動量を用いたアダプティブメッシュの圧縮比という量を定義し、アダプティブEMの有効性との関係について数値実験を行いその解析をした。それにより、アダプティブメッシュ有限要素法の有効性が数量化されるとともに、解の持つパターンの指標化の試みの一つとして新しい方向性が見出された。
|