• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2014 年度 実績報告書

時間依存型密度比推定による高次元変化検知

研究課題

研究課題/領域番号 13J03189
研究機関東京工業大学

研究代表者

柳 松  東京工業大学, 情報理工学研究科, 特別研究員(PD)

研究期間 (年度) 2013-04-01 – 2015-03-31
キーワードMACHINE LEARNING / DENSITY RATIO ESTIMATION / CHANGE DETECTION / GRAPHICAL MODEL
研究実績の概要

In this research, we have mainly focused on the problem of change detection in high-dimensional time-series, and more generally, on dependent dataset.
We have spent most our time in the first year developing a methodology for change detection in Graphical Models, where we input two sets of data drawn from two different distributions with different interactions among random variables. In such methodology, we assumed that the changes between two stages are subtle and most of the interactions remain unchanged. As a consequence of this assumption, the sparsity is assumed in our statistical model and via Density Ratio Estimation method, the sparse changes between two Graphical Models are learned.
In this year, we conducted a theoretical study for such methodology and give statistical guarantees of the superiority of the proposed change detection method. Specifically, we give the sufficient conditions that our change detection method works, in terms of sample complexity against the increasing number of changed edges and dimensions.
Moreover, the above methodology itself is for learning changes from two sets of data. However, It is nature to ask that is it possible to apply such powerful method to the learning of the Graphical Model structure itself? Our new idea is simply learning the difference between the join distribution and the product of marginal distributions.
To sum up, we have not only finished the research promised in the proposal, but also investigated a new (and important) application of the proposed method and theory.

現在までの達成度 (段落)

26年度が最終年度であるため、記入しない。

今後の研究の推進方策

26年度が最終年度であるため、記入しない。

  • 研究成果

    (2件)

すべて 2015 2014

すべて 学会発表 (2件)

  • [学会発表] Support consistency of direct sparse-change learning in Markov Support consistency of direct sparse-change learning in Markov networksSupport consistency of direct sparse-change learning in Markov networks2015

    • 著者名/発表者名
      Liu, S. and Suzuki, T. and Sugiyama, M.
    • 学会等名
      Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI2015)
    • 発表場所
      Hyatt Regency Austin, 208 Barton Springs Road, Austin, US,
    • 年月日
      2015-01-26 – 2015-01-30
  • [学会発表] Support consistency of direct sparse-change learning in Markov Support consistency of direct sparse-change learning in Markov networksSupport consistency of direct sparse-change learning in Markov networks2014

    • 著者名/発表者名
      Liu, S. and Suzuki, T. and Sugiyama, M.
    • 学会等名
      第17回情報論的学習理論ワークショップ(IBIS2014)
    • 発表場所
      Nagoya University, Nagoya, Japan
    • 年月日
      2014-11-17 – 2014-11-17

URL: 

公開日: 2016-06-01  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi