• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2002 年度 実績報告書

リーマン多様体の収束とラプラシアンのスペクトル

研究課題

研究課題/領域番号 14540056
研究機関東北大学

研究代表者

塩谷 隆  東北大学, 大学院・理学研究科, 助教授 (90235507)

研究分担者 藤原 耕二  東北大学, 大学院・理学研究科, 助教授 (60229078)
桑江 一洋  横浜市立大学, 大学院・総合理学研究科, 助教授 (80243814)
キーワードGromov-Hausdorff収束 / 変分収束 / エネルギー汎関数 / ラプラシアン
研究概要

ヒルベルト空間上の線形変分収束理論は解析学において重要な研究分野であるが,これを拡張して(特に非コンパクトな)リーマン多様体に収束に応用した.その際,固定されたヒルベルト空間上の作用素の摂動を考えるのではなく,ヒルベルト空間自体までも摂動させる必要がある.応用として,収束する多様体のスペクトルについて幾つか新しい結果を得た.また,この研究は確率過程の収束にも重要な応用があることをドイツの研究者から示唆を受けたが,実際そのような仕事のプレプリントを受け取った.現在はさらにこれを非線形に拡張しているところである.ここで言う非線形への拡張とは,ヒルベルト空間を一般の距離空間へと拡張することで,その理論の本質的な部分は解析的というよりは,幾何学的になる.これを説明するため,一つの具体的な定理を挙げると,エネルギー汎関数の収束はソボレフ空間のサブレベルのGromov-Hausdorff収束と同値であることを証明した.この応用として以下が証明できる.一定の次元をもちRicci曲率が一様に下に有界なリーマン多様体の族{M}と点つきGromov-Hausdorff位相に関してプレコンパクトな,(コンパクトとは限らない)距離空間の族{Y}が与えられた時,エネルギーが任意に固定された定数a以下の写像u : M→Yの全体W^a(M,Y)を考えると,族{W^a(M,Y)_<M,Y>}は点つきGromov-Hausdorff距離に関してプレコンパクトである.ここで,写像の間の距離はL^2距離とする.

  • 研究成果

    (5件)

すべて その他

すべて 文献書誌 (5件)

  • [文献書誌] K.Kuwae, T.Shioya: "Sobolev and Dirichlet spaces over maps between metric spaces"Journal fur die Reine und Ange. Mat.. (掲載予定).

  • [文献書誌] K.Kuwae, T.Shioya: "Convergence of spectral structure : a functional analytic theory and its applications to spectral geometry"Communications in Analysis and Geometry. (掲載予定).

  • [文献書誌] K.Kuwae: "Reflected Dirichlet forms and the uniqueness of Silverstein's extension"Potential Analysis. 16・3. 221-247 (2002)

  • [文献書誌] K.Fujiwara: "On the outer automorphism group of a hyperbolic group"Israel Journal of Mathematics. 131. 277-284 (2002)

  • [文献書誌] K.Shiohama, T.Shioya, M.Tanaka: "The Geometry of Total Curvature on Complete Open Surfaces"Cambridge University Press(出版予定). 300

URL: 

公開日: 2004-04-07   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi