-
[文献書誌] T.Kobayashi, T.Suzuki, K.Watanabe: "Interface regularity for the Maxwel and Stokes systems"Osaka J.Math. 40. 925-943 (2003)
-
[文献書誌] A.Shimomura: "Modified wave operators for the coupled Wave-Schrodinger equations in three space dimensions"Discrete Contin.Dyn.Syst.. 9. 1571-1586 (2003)
-
[文献書誌] A.Shimomura: "Modified wave operators for Maxwell-Schrodinger equations in three space dimensions"Ann.Henri Poincare. 4. 661-683 (2003)
-
[文献書誌] A.Shimomura: "Wave operators for the coupled Klein-Gordon-Schrodinger equations in two space dimensions"Funkcial.Ekvac.. 47(発行予定). (2004)
-
[文献書誌] Y.Nakamura, A.Shimomura: "Local well-posedness and smoothing effects of strong solutions for nonlinear Schrodinger equations with potentials and magnetic fields"Hokkaido Math.J. (to appear)(発行予定). (2004)
-
[文献書誌] A.Shimomura: "Scattering theory for Zakharov equations in three space dimensions with large data"Commun.Contemp.Math.. (to appear)(発行予定). (2004)
-
[文献書誌] A.Shimomura: "Long range scattering for nonlinear Schrodinger equations in one and two space dimensions"Differential Integral Equations.. (to appear)(発行予定). (2004)
-
[文献書誌] A.Shimomura: "'T.Cazenave and A.Haraux, An Introduction to Semilinear Evolution Equations'の書評"雑誌数学. (印刷中)(発行予定). (2004)
-
[文献書誌] A.Shimomura: "Scattering theory for the Zakharov equations in three space dimensions"京都大学数理解析研究所講究録. (in press). (2004)
-
[文献書誌] T.Ogawa, Y.Taniuchi: "A note on blow-up criterion to the 3-D Euler Equations in a bounded domain"J.Math.Fluid Mech.. 5. 17-23 (2003)
-
[文献書誌] T.Ogawa, Y.Taniuchi: "On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain"J.Differential Equations. (in press). (2003)
-
[文献書誌] M.Kurokiba, T.Ogawa: "Finite time blow-up of the solution for the nonlinear parabolic equation of the drift diffusion type"Diff.Integral Equations. 16. 427-452 (2003)
-
[文献書誌] H.Kozono, T.Ogawa, Y.Taniuchi: "Navier-Stokes equations in the Besov space near L^∞ and BMO"Kyushu J.Math.. 57. 303-324 (2003)
-
[文献書誌] Y.Taniuchi, T.Ogawa: "The limiting uniqueness criterion by vorticity to Navier-Stokes equations in Besov spaces"Tohoku Math.J.. 56. 65-77 (2004)
-
[文献書誌] T.Ogawa, T.Yokota: "Uniqueness and inviscid limit to the complex Ginzburg-Landau equation in two dimensional general domain"Comm.Math.Phys.. 245. 105-121 (2004)