研究分担者 |
大谷 光春 早稲田大学, 理工学術院, 教授 (30119656)
山崎 昌男 早稲田大学, 理工学術院, 教授 (20174659)
倉田 和浩 首都大学東京, 都市教養学部, 教授 (10186489)
柴田 徹太郎 広島大学, 大学院・工学研究科, 教授 (90216010)
石渡 通徳 早稲田大学, 理工学術院, 助手 (30350458)
|
研究概要 |
変分的手法により非線型楕円型方程式の解の存在,多重性の研究を行った.特に特異摂動問題の解析に重点を置いた. 1.非有界領域における非線型楕円型方程式に関しては,一般的な非線型項f(u)を伴う方程式-Δu+V(x)u=f(u)に関して解の存在証明をmonotonicity method等を用いて与えた.従来ほとんどの存在結果ではglobal Ambrosetti-Rabinowitz条件等のf(u)に対する大域的な条件が設定されていたが,V(x)に対してある種のdecay条件を課すことにより,f(u)に対する大域的な条件を仮定することなく,解の存在を保証することに成功した. 2.特異摂動問題としては通常とは異なる形で摂動パラメーターが導入された問題-Δu+λ^2a(x)u=|u|^<p-1>u in R^Nに関して考察を行った.λ→∞とするとき,Ω={x∈R^N;a(x)=0}(有界かつ滑らかと仮定する)を定義域とするDirichlet問題の解が現れる.ここではΩが複数個の連結成分からなる場合に,各成分上Dirichlet問題の解が与えられたとき,その解にλ→∞のときに収束するR^N上の界u_λ(x)が存在するか否か研究を行った(connecting problem).従来,このような問題は極限問題の解の非退化性の仮定の下で議論されることが多いが,ここではp∈Nのとき非退化性を全く仮定せずに論じることに成功した.なお関連する話題として,生物モデルにおけるdisruptedな環境をモデルとした解析を行い,安定解の多重性等を見いだした. 3 特異摂動問題に関しては,従来変分的に全く研究されていなかった高エネルギー(振動)を持つ解の族の特徴づけおよび存在問題の研究に取り組み,力学系におけるaveraging theory (theory of adiabatic invariants)と関連する結果を得た.特に,'極限エネルギー関数'を用いた解のパターンの記述,逆にadmissibleなパターンに対してそれを実現する解の族の構成に成功した.
|