共鳴X線散乱の機構を微視的立場から研究し、次の成果を得た。 弾性散乱 (1)反強磁性体KCuF_3およびNiOにおけるCuおよびNiのK吸収端を用いた共鳴X線散乱(RXS)の磁気超格子点におけるスペクトルを解析した。スピン軌道相互作用を取り入れた第一原理計算(LDA+U)を行い、実験結果をよく説明するとともに、4pバンドの軌道分極の機構を明らかにした。 (2)反強磁性体UGa_3におけるGaのK吸収端を用いたRXSの磁気超格子点におけるスペクトルを、スピン軌道相互作用を取り入れた第一原理計算(LDA+U)を行い解析した.Gaの4p状態の軌道分極は、Uの大きな軌道磁気モーメントをもつ5f状態とGaの4p状態との混成から生じることを明らかにし、実験で見出された巨大なスペクトル強度をよく説明した。 (3)CeB_6の四重極秩序相に対応する超格子点におけるX線散乱スペクトルを、Ce4f-Ce4f有効相互作用模型に基づく原子模型を用いて解析した。共鳴散乱とトムソン散乱の干渉効果の実験結果を、格子歪を仮定することなく自然に説明することができた(実験でも格子歪は観測されていない)。 非弾性散乱 (1)GeのK吸収端を用いた共鳴非弾性X線散乱(RIXS)スペクトルを第一原理計算に基づき解析し、バンドマッピングとの関係を明らかにするとともに、実験結果をよく再現した。 (2)La_2CuO_4におけるCu K吸収端におけるRIXSスペクトルの解析を、d-p模型を用いて行った。反強磁性状態にハートレーフォック法と乱雑位相近似を組み合わせて適用し、終状態の運動量に依存してピークが動く等、実験結果をよく説明した。これにより、それまでの束縛励起子描像と違う描像が明らかになった。
|