研究概要 |
共通鍵ブロック暗号に対する汎用で強力な攻撃法として1991年に差分攻撃、1993年に線形攻撃が発表され、対策として、証明可能安全性の研究が進み暗号設計技法に反映されてきた。それに配慮した近年の暗号に最も効果を上げているのが、高階差分攻撃、補間攻撃、線形和攻撃等の解析的手法に基づく攻撃法である。 本研究においては、近年の暗号として、電子政府用暗号評価リスト作成プロジェクトであるCRYPTRECに応募された共通鍵ブロック暗号を中心に選び、線形和攻撃に対する横並びの強度評価を行なった。具体的には10種類の暗号(Camellia, CIPHERUNICORN-A, CIPHERUNICORN-E, FEAL-NX, Hierocrypt-3, Hierocrypt-L1, MARS, MISTY1, RC6, SC2000)に対し、高階差分攻撃を含め補間攻撃と線形和攻撃を各暗号に適用した場合の効率及び適用可能段数を明らかにした。 その過程で、作成したプログラムをC言語ライブラリイとして、取りまとめ、高階差分・補間攻撃等の解析的攻撃に対する共通鍵暗号の強度評価ツールの基本形を作成した。暗号アルゴリズムが、与えられた時、各種定義体において、補間多項式を構成する未知係数個数が結果として得られ、暗号の強度評価指標を与える。 しかし、変数として選ぶ平文ビットにより、攻撃の効率は変わる。率直な変数の選び方として、任意の1バイトを変数として選び、上記10種類の暗号方式相互間の強度比較指標を導いた。全ての変数組み合わせを調査する事は、計算量的に困難であり、暗号方式の構造に基づいた、発見的手法に頼る事となる。このツールを使い、Camellia、MISTY1、KASUMIについてさらなる安全評価を行った。現時点において、これら暗号に対し最も効果を上げている攻撃が、研究発表[雑誌論文]に示した論文である。
|