• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2002 年度 実績報告書

フィンスラー多様体への調和写像とハーツホーン予想の証明

研究課題

研究課題/領域番号 14654011
研究機関東北大学

研究代表者

西川 青季  東北大学, 大学院・理学研究科, 教授 (60004488)

研究分担者 立川 篤  東京理科大学, 理工学部, 助教授 (50188257)
石田 正典  東北大学, 大学院・理学研究科, 教授 (30124548)
キーワード調和写像 / フィンスラー計量 / ハーツホーン予想
研究概要

1970年にR.Hartshorneは「豊富な接束をもつ非特異既約射影多様体は射影空間に同型である」という予想を提出し,この予想は1979年に森重文氏により,代数幾何学的手法を用いて証明された.一方,1975年に小林昭七氏は「コンパクト複素多様体上の正則ベクトル束が豊富になることと,その双対束が負曲率をもつ擬凸な複素フィンスラー計量を許容することが同値である」ことを証明した.この事実は,計量のカテゴリーをフインスラー計量まで拡げれば,代数幾何学的概念である豊富な正則ベクトル束の微分幾何学的特徴付けが可能であることを意味している.
本研究は,この小林氏の結果を手懸かりに,コンパクト複素多様体に対するハーツホーン予想を,フィンスラー幾何学のカテゴリーで,微分幾何学的手法により証明することを目的としている.
小林氏と落合氏による複素射影空間の特徴付けによれば,このような多様体上に自明でない有利曲線が存在することを示せば,ハーツホーン予想を証明することができる.したがって,本研究の第一の目標は,一般のリーマン面から複素フインスラー多様体への調和写像の理論を構築し,双対接束が負曲率かつ擬凸な複素フィンスラー計量を許容するコンパクト複素多様体に対して,非自明な有理曲線の存在を証明することである.
この問題に関して,本年度の研究で得た研究成果は次の通りである.
1.2000年にP.Centoreは,フィンスラー多様体間の写像のエネルギーとそれを基にした調和写像の定義を与えたが,立川との共同研究において,この定義による調和写像は,定義域をリーマン面に制限した場合においても,一般にヘルダー連続性以上の微分可能性が期待できないことが明らかになった.
2.S.Doragomirとの共同研究において,リーマン面からフィンスラー多様体への写像に対するより適切なエネルギーの定義が明らかになった.

  • 研究成果

    (4件)

すべて その他

すべて 文献書誌 (4件)

  • [文献書誌] Seiki Nishikawa: "Harmonic maps between Carnot spaces"Differential Geometry and Related Topics : Proceedings of the International Conference on Modern Mathematics. (発表予定). (2003)

  • [文献書誌] Atsushi Tachikawa: "A partial regularity result for harmonic maps into Finsler manifolds"Calculus of Variations and Partial Differential Equations. 16・2. 217-224 (2003)

  • [文献書誌] 西川 青季: "カルノー空間の間の固有調和写像について"数理解析研究所講究録. 1270. 153-169 (2002)

  • [文献書誌] Seiki Nishikawa: "Variational Problems in Geometry"America Mathematical Society. 209 (2002)

URL: 

公開日: 2004-04-07   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi