• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2014 年度 実績報告書

最低センサー数を用いた人間の動さ計測と認識とその応用

研究課題

研究課題/領域番号 14F04768
研究機関東京農工大学

研究代表者

VENTURE Gentiane  東京農工大学, 工学(系)研究科(研究院), 准教授 (30538278)

研究分担者 BONNET Vincent  東京農工大学, 工学(系)研究科(研究院), 外国人特別研究員
研究期間 (年度) 2014-04-25 – 2017-03-31
キーワード人間力学
研究実績の概要

Quantification and identification of human kinematic and kinetic variables using low-cost sensors: This module will receive as input the data from low-cost FPs, IMU, similar to the one embedded in recent smart-phones and/or of a Microsoft Kinect sensor. A RGB-Depth camera tracking the IMU position will be used punctually to cancel the drift. Also, merging an IMU and a RGB-Depth camera data will allow the motion capture system to handle occlusion that can easily appears during complex industrial tasks. New adaptive filters, based on Kalman filter and Weighted Fourier linear combiner, including a constrained kinematic model of the investigated limb(s) as state vector will be developed to fuse these two sensors.
The FP will be used prior to the measurement to perform a 3D fast identification of the inertial parameters of the subject.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

The candidate is extremely brilliant and autonomous and he pursue research with a lot of enthusiasm. He also work in collaboration with students from the lab which allows to accelerate and produce excellent results.

今後の研究の推進方策

Quantification and identification of human kinematic and kinetic variables using low-cost sensors:
This module will receive as input the data from low-cost FPs, IMU, similar to the one embedded in recent smart-phones and/or of a Microsoft Kinect sensor. A RGB-Depth camera tracking the IMU position will be used punctually to cancel the drift. Also, merging an IMU and a RGB-Depth camera data will allow the motion capture system to handle occlusion that can easily appears during complex industrial tasks. New adaptive filters, based on Kalman filter and Weighted Fourier linear combiner, including a constrained kinematic model of the investigated limb(s) as state vector will be developed to fuse these two sensors. The FP will be used prior to the measurement to perform a 3D fast identification of the inertial parameters of the subject.

  • 研究成果

    (2件)

すべて 2015

すべて 雑誌論文 (2件) (うち国際共著 1件、 査読あり 2件、 謝辞記載あり 2件)

  • [雑誌論文] Towards an affordable mobile analysis platform for pathological walking assessment2015

    • 著者名/発表者名
      V. Bonnet, C. Azevedo-Coste, L. Lapierre, J. Cadic, P. Fraisse, R. Zapata, G. Venture, C. Geny
    • 雑誌名

      Robotics and Autonomous Systems

      巻: 66 ページ: 116-128

    • DOI

      http://dx.doi.org/10.1016/j.robot.2014.12.002

    • 査読あり / 国際共著 / 謝辞記載あり
  • [雑誌論文] Fast determination of the planar body segment inertial parameters using affordable sensors2015

    • 著者名/発表者名
      V. Bonnet, G. Venture
    • 雑誌名

      IEEE Trans. on Neural Systems & Rehabilitation Engineering

      巻: 印刷中 ページ: 印刷中

    • DOI

      N/A

    • 査読あり / 謝辞記載あり

URL: 

公開日: 2016-06-01  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi