• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2014 年度 実績報告書

確率拡散方程式系

研究課題

研究課題/領域番号 14J00047
研究機関大阪大学

研究代表者

TA Ton V.  大阪大学, 情報科学研究科, 特別研究員(PD)

研究期間 (年度) 2014-04-25 – 2016-03-31
キーワードForest model / Evolution equations / Swarm behaviour model / Lotka-Volterra model
研究実績の概要

I have studied stochastic parabolic evolution equations and some mathematical models in biology and ecology.
A. Stochastic parabolic evolution equations. The equations are of the form: dX=[AX+F(t)+G(X)]dt + K(t)dW(t). I have obtained results on existence, uniqueness, maximal regularity and regular dependence on initial data of solutions to stochastic linear and semilinear evolution equations by presenting new techniques in the semigroup approach.
B. Mathematical models. I have investigated three models: Stochastic Forest Ecosystem Model, Lotka-Volterra Model and Swarm Behaviour Model. For the first model, we achieved results on existence, uniqueness and boundedness of global positive solutions as well as existence of an invariant measure. We showed some sufficient conditions for sustainability of forest and proved that under the effect of large noise, the forest falls into decline. For the second one, we obtained results on existence of global solutions, periodic solutions and their stability. For the last one, we investigated mathematically the process of fish schooling by constructing and studying some stochastic ordinary differential equations based on the rules presented by Camazine-Deneubourg-Franks-Sneyd-Theraulaz-Bonabeau. Our models describe the movement of fish in environment with noise and obstacles. We obtained an insight of fish school cohesiveness by observing how obstacle-avoiding pattern changes as modelling parameters change.
The results have been submitted to some academic journals for publications.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

Let me recall my initial aim. It is to study two models:
1. Stochastic Diffusion Coat Pattern,
2. Stochastic Forest Ecosystem.
Our results on stochastic linear and semilinear evolution equations now can be applied for Stochastic Diffusion Coat Pattern to obtain existence of global solutions. We have also submitted the results related to Stochastic Forest Ecosystem to a journal for publication.

今後の研究の推進方策

I am currently studying non-autonomous evolution equations and semilinear evolution equation with additive noise. This is motivated by internal development of the theory of stochastic processes on one side, and by a need to study some our models (for example, Stochastic Diffusion Coat Pattern and Stochastic Forest Ecosystem) on the other side (to the best of our knowledge, the previous results do not seem strong enough to be applied to such models). The framework includes the following problems:
1. Existence and uniqueness of (global and local, strict and mild) solutions.
2. Regularity and regular dependence on initial data of solutions.
3. Long-time behaviour of solutions.
Once the task if fulfilled, it can be applied to Stochastic Diffusion Coat Pattern and Stochastic Forest Ecosystem to obtain more information on these systems.

  • 研究成果

    (5件)

すべて 2015 2014

すべて 雑誌論文 (1件) (うち査読あり 1件、 謝辞記載あり 1件) 学会発表 (4件)

  • [雑誌論文] Existence and stability of periodic solutions of a Lotka-Volterra system2015

    • 著者名/発表者名
      Ta Viet Ton
    • 雑誌名

      Proceedings of the SICE International Symposium on Control Systems

      巻: なし ページ: 712-4:1-6

    • 査読あり / 謝辞記載あり
  • [学会発表] Existence and stability of periodic solutions of a Lotka-Volterra system2015

    • 著者名/発表者名
      Ta Viet Ton
    • 学会等名
      SICE International Symposium on Control Systems 2015
    • 発表場所
      Tokyo Denki University
    • 年月日
      2015-03-04 – 2015-03-07
  • [学会発表] Stochastic Partial Differential Equations2015

    • 著者名/発表者名
      Ta Viet Ton
    • 学会等名
      Seminar of Stochastic Analysis Group
    • 発表場所
      Bielefeld University, Bielefeld, Germany
    • 年月日
      2015-01-08 – 2015-01-20
  • [学会発表] White Noise and Stochastic Differential Equations2014

    • 著者名/発表者名
      Ta Viet Ton
    • 学会等名
      第5回のIPSコロキウム
    • 発表場所
      大阪大学情報科学研究科
    • 年月日
      2014-09-09 – 2014-09-09
  • [学会発表] Stochastic Partial Differential Equations in M-Type 2 Banach Spaces2014

    • 著者名/発表者名
      Ta Viet Ton
    • 学会等名
      Workshop on Equilibrium and Fixed Point Problems: Theory and Algorithms
    • 発表場所
      Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam
    • 年月日
      2014-08-25 – 2014-08-26

URL: 

公開日: 2016-06-01  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi