研究課題
基盤研究(A)
研究期間中、各分担者とも、個別の問題によらない無限次元・有限次元の共通的精度保証付き数値計算およびその関連数値計算方式の開発に対して恒常的に取り組み、その改良・拡張と、新たな方式の検討を行った。また、実際の現象に即した問題に対する、数値的検証の実例も与えその有効性の実証に努めた。また、内外の研究集会に参加し、講演討論を行い、研究成果の発信を行うとともに活発な研究情報を交換し、新たな研究の進展を図った。主な研究実績は以下の通りである。1.共通的数値検証理論とその実装(1)任意領域における楕円型方程式、定常Navier-Stokes方程式の解に対する数値的検証のために、Poisson方程式、および2次元重調和方程式の有限要素解に対する構成的事前誤差評価について検討し、十分な実用性をもつ評価定数の算定を行った。(中尾、山本、田端、土屋)(2)非線形楕円型方程式のdouble-turning-pointの数値検証を定式化しその実例を与えた(皆本)(3)1階微分項を持つ2階楕円型方程式の数値検証の効率化について検討した(中尾、渡部)(4)線形化作用素の逆作用素ノルムを直接評価し、それを用いた無限次元Newton法にもとづく新しい検証方式の検討を行い、その適用による有効性を確認した。(中尾)(5)有限次元一次相補性問題の解の精度保証付き計算について検討しその方式を定式化した(陳)(6)連立一次方程式の解の高速精度保証について検討しその大幅な改良を得た(大石)(7)多培長演算ソフトウェアを実装し超高精度近似解の計算を可能とした(今井)(8)非線形振動問題に関する計算機援用可能な分岐理論を定式化しその応用例を与えた(川中子)2.個別問題の解に対する数値的検証方式とその適用(1)2次元熱対流問題の大域的分岐解の検証付き追跡および分岐点の存在検証を行い、さらに3次元問題に対してもその拡張を図った(西田、中尾、渡部)(2)線形化Navier-Stokes作用素の固有値問題であるKolmogorov固有値問題の精度保証付き数値計算によりトーラス上の流れの安定性を検証した(長藤)(3)水面波の数学モデルであるNekrasov積分方程式の精度保証付き数値計算を実現した(村重)
すべて 2007 2006 2005 2004 2003 その他
すべて 雑誌論文 (18件)
Journal of Computational and Applied Mathematics 199
ページ: 445-451
Journal of Computational and Applied Mathematics 202
ページ: 177-185
ページ: 424-431
Proc.Navier-Stokes Equations and Applications, New Series of Kokyuroku, RIMS, Kyoto University
ページ: 1-19
ページ: 286-296
Proceedings of Nonlinear Theory and its Applications NOLTA 2006,11-14 September, Bologna, Italy
ページ: 427-430
SIAM Journal on Numerical Analysis 44
ページ: 2326-2341
IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E89-A
ページ: 1813-1819
Computing 75
ページ: 1-14
Numerical Functional Analysis and Optimization 26
ページ: 523-542
Journal of Mathematical Fluid Mechanics 6
ページ: 1-20
Numerical Algorithms 37
ページ: 311-323
Numerical Algorithms 37, Special issue for Proceedings of SCAN2002
Reliable Computing 9
ページ: 359-372
GAKUTO International Series, Mathematical Sciences and Applications, Proceedings of the 4th JSIAM-SIMAI Seminar on Industrial and Applied Mathematics, May 26-28,2005,Hayama, Japan (to appear)