• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2005 年度 研究成果報告書概要

ガロア理論における生成的多項式族の構成とその数論研究

研究課題

研究課題/領域番号 15340015
研究種目

基盤研究(B)

配分区分補助金
応募区分一般
研究分野 代数学
研究機関早稲田大学

研究代表者

橋本 喜一朗  早稲田大学, 理工学術院, 教授 (90143370)

研究分担者 小松 啓一  早稲田大学, 理工学術院, 教授 (80092550)
村上 順  早稲田大学, 理工学術院, 教授 (90157751)
三宅 克哉  早稲田大学, 理工学術院, 客員教授 (20023632)
福田 隆  日本大学, 生産工学部, 助教授 (00181272)
角皆 宏  上智大学, 理工学部, 講師 (20267412)
研究期間 (年度) 2003 – 2005
キーワードガロア理論 / ガロア群 / ガロア逆問題 / 生成的多項式 / ネーターの問題 / 巡回多項式 / メタアーベル群 / ガウス周期
研究概要

本研究補助費の援助によって研究代表者が主催者となり開催した,研究集会に於いて多くの講演・討論が活発に行われ,直接・間接の両面で数多くの成果が挙げられた.特に,研究上で共通の課題をもち,近年著しい研究成果を挙げつつあることを鑑みて,海外から7名の研究者を招聘した.これによって互いの研究に大きな進展が得られたのみならず,今後の協力体制を確立できたことは大変有意義であった.
本研究の主要課題である「生成的」多項式族の構成について,第一の成果は,5次の可移な置換群である5個の有限群S_5,A_5,F_5,D_5,C_5に対して,2個のパラメータを持つ生成的多項式族を具体的に構成したことである.更にこの研究の応用として最終年度においては長年の懸案であった,A.Brumerによる3助変数をもつ6次のA_5多項式族のがQ上生成的であることが証明できたことは特筆に値する.
また,Noether問題に関しては,例えば8次巡回群については答は否定的であることが知られているが,8を法とする1次元有限アフィン変換群の位数16の非可換部分群Gで8次巡回群を含むものすべてに対して4次元線型Noether問題を考察し,その肯定的な解答と最適と思われる生成系を具体的に与えた.応用として,4次巡回拡大が8次巡回拡大に埋蔵され得るための極めて簡明な必要十分条件を与えた.また,基礎体をいろいろ変化させた場合にversalな8次巡回多項式の助変数を4から3に下げられる為の条件についても考察をし,簡明な必要十分条件を与えた.

  • 研究成果

    (10件)

すべて 2005 2004

すべて 雑誌論文 (10件)

  • [雑誌論文] Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Tokyo. J. Math. 28・1

      ページ: 13-32

    • 説明
      「研究成果報告書概要(和文)」より
  • [雑誌論文] 超楕円曲線と mod 2 ガロア表現について2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      数理解析研究所講究録 1451

      ページ: 285-294

    • 説明
      「研究成果報告書概要(和文)」より
  • [雑誌論文] Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Math. Comp. 74

      ページ: 1519-1530

    • 説明
      「研究成果報告書概要(和文)」より
  • [雑誌論文] Type numbers and linear relations of theta series for some general orders of quaternion algebras2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Proceedings of the Conference in Memory of Tsuneo Arakawa. World Scientific

      ページ: 107-129

    • 説明
      「研究成果報告書概要(和文)」より
  • [雑誌論文] Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Tokyo.J.Math. 28-1

      ページ: 13-32

    • 説明
      「研究成果報告書概要(欧文)」より
  • [雑誌論文] Hyperelliptic curves and mod 2 Galois representations2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Proceedings of the RIMS Conference 1451

      ページ: 285-294

    • 説明
      「研究成果報告書概要(欧文)」より
  • [雑誌論文] Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Math.Comp. 74

      ページ: 1519-1530

    • 説明
      「研究成果報告書概要(欧文)」より
  • [雑誌論文] Type numbers and linear relations Of theta series for some general orders of quaternion algebras2005

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Proceedings of the Conference in Memory of Tsuneo Arakawa, World Scientific

      ページ: 107-129

    • 説明
      「研究成果報告書概要(欧文)」より
  • [雑誌論文] Noether's Problem and Q-generic Polynomial for the affine transformation group Z/8Z and its subgroups of exponent 82004

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      早稲田大学整数論研究集会報告 9

      ページ: 13-26

    • 説明
      「研究成果報告書概要(和文)」より
  • [雑誌論文] Noether' s Problem and Q-generic Polynomial for the affine transformation group Z/8Z and its subgroups of exponent 82004

    • 著者名/発表者名
      Kiichiro Hashimoto
    • 雑誌名

      Proceedings of the Conference on Number Theory in Waseda University 9

      ページ: 13-26

    • 説明
      「研究成果報告書概要(欧文)」より

URL: 

公開日: 2007-12-13  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi