研究課題/領域番号 |
15530439
|
研究機関 | 立命館大学 |
研究代表者 |
吉田 甫 立命館大学, 文学部, 教授 (80094085)
|
研究分担者 |
栗山 和広 九州保健福祉大学, 社会福祉学部, 教授 (10170094)
星野 祐司 立命館大学, 文学部, 教授 (20202301)
|
キーワード | インフォーマルな知識 / 割合 / 既有知識 / 子どもの発達 |
研究概要 |
小学校高学年(4〜6年生)の子どもが、教室で割合概念を学習する以前に、日常生活の中でどのようなインフォーマルな知識を獲得しているかを研究した。分析の支店としては、(1)割合の基礎となる意味の理解、(2)量的な表現としての割合の理解である。 (1)については、基礎となる意味として、部分-全体の概念、全体としての1の概念などを仮定し、それらに対応する問題を作成した。これら割合の意味に関わる問題を作成するさいの状況としては、値引き状況(あるデパートでは2500円のャツを20%引きで売っています。別のデパートでは同じものを30%引きで売っています。どちらのデパートが安いでしょう)、部分-全体(崇君は、80%の力を出してグランドを走っています。全力で走るとすれば後何%の力を出せるでしょう)、全体としての1の概念(異なる大きさの図を提示し、そこに100%水を入れたときの量を線で答えさせる)といった問題を使用した。 これらの問題を未だ割合を公式に学習していない小学4、5年生とすでに学習が終わった6年生とに提示した。その結果、割合の意味に関するインフォーマルな知識については、すでに学習を終了している6年生と未だ学習をしていない5年生との間では、まったく正答率に差が見られず、また4年生も平均値は少し低いものの、6年生との間に統計的な差は認められなかった。こうして、割合の意味に関しては、学校で公式に学習する2年も前の子どもがかなり豊かなインフォーマルな知識を獲得していることが見いだされた。 (2)については、50%、25%、75%、90%を示した図を提示し、その大きさの割合を評定させた。その結果、5年生と6年生との間に差はなかった。ただ、4年生は統計的にこれらの学年よりは低い正答率であった。こうして、量としての割合の概念においても、学習する以前の子どもにおけるインフォーマルな知識を獲得していることが示された。
|