研究概要 |
大自由度ハミルトン力学系における遅い緩和の起源を,系の内部自由度の存在,という観点から調べることが本研究の主たる目的であるが,本年度は,その問題をより明確に切り出すために,剛体球モデルにおける遅い緩和発生の起源の研究を開始した.近年,2種の大きさをもつ剛体球モデルにおいて,ガラス転移現象が起こることが計算機上で発見され,ガラス転移のミニマルモデルとして研究が盛んになされている.われわれは,剛体球モデルで見られる遅い緩和の起源を,ハミルトン力学系の遅い緩和の問題としてどのように理解すべきか?という視点から,2次元,および3次元剛体球モデルのシミュレーションを行った.厳密な証明は与えられていないものの,円筒状の障害物がある一体のビリヤード問題(シナイのビリヤード系)と同様に剛体球モデルはエルゴード性を満たし,かつ,一様双曲性をもつことが期待される.したがって,昨年度考察した,ソフトなポテンシャルをもつ系のように,系の(近似的)保存量が存在することにより遅い緩和が発生することはあり得ず,異なる理由を考察する必要がある.本年度は,まず,数個(2〜5個程度)の剛体球系の相転移を詳しく調べた.とくに2次元の剛体球系では,剛体球の個数が2個の場合とそれ以上の場合とでは,エルゴード成分の分離のされ方に定性的な相違があることが明らかになり,力学系としての性質を詳しくしらべた.また,系のシステムサイズが大きい際のシミュレーションも実行し,固液の相転移点の近傍で長時間の緩和現象を発見し,そのシステムサイズ依存性などをしらべた.
|