研究概要 |
結び目の局所変形とは,文字どおり結び目を局所的に変形する操作のことである.この局所変形を用いると結び目の集合に同値関係を定義することができる.結び目の局所変形はいろいろ定義され研究されているが,その中でもCk-move(kは自然数)はVassiliev不変量と密接な関係があることが知られており,多数の研究者が興味を持ち研究がされている. Ck-moveで与えられる結び目の同値類は結び目の連結和の下で可換群(Ck-同値群と呼ぶ)になることが知られている.この群は結び目のVassiliev不変量で定義されるGusarov群と同型であることも知られており,結び目のVassiliev不変量の研究において,Ck-同値群の研究は非常に重要である.Ck-同値群の研究において,次の問題 「Ck-同値群(=Gusarov群)は自由加群か?」 は現在未解決の難問である.本研究ではこの問題の解決の試みとして,Ck-moveに関連した新しい局所変形βk-moveについて研究を行った. 昨年度までの研究では,Ck-同値群とβk-同値群は,k=1,3のときは同型で,k=2のときは同型でないことがわかっていた.本年度は,一般のk>3の場合についてβk-同値群の構造を調べ,Ck-同値群とβk-同値群が同型になることがわかった.この結果により,Ck-同値群とβk-同値群の関係が完全に明らかになった.
|