研究課題
1.方程式の対称性とパラメータ変化における解の挙動:プラズマ中の非線形波動を記述するZakharov方程式およびKlein-Gordon-Zakharov系について、非線形Schrodinger近似における解の収束を調べた。逐次近似による双線形分散性から非線形エネルギーへ評価の重点を移すことで、昨年度の結果をさらに改良し、全ての有限エネルギー解についてエネルギーノルムでの強収束を示した。その手法は、滑らかさの低い空間での最小限の分散性評価、極限での誤差評価をこめた非線形エネルギー評価、及びそれらのFourier制限ノルムでの補間によって構成される。この改良は伝播速度の数が増えると更に強力であり、特に電磁気学的波動と熱力学的波動の違いによる2パラメータを持つベクトル値Zakharov系についても、エネルギー空間での一様な評価と亜音速・静電極限における強収束を得た。2.非線形波動方程式の一般解の大域挙動:超流動などのモデルであるGross-Pitaevskii方程式の定数定常解の近傍で一般解の時間大域挙動を解析した。空間遠方で減衰しない定常解との相互作用は分散性に対する大きな障害となって、端的にはFourier空間における原点での特異性として、線形化作用素に現れる。分散性の弱い低次元、特に2次元空間においては、非線形Schrodinger方程式でも一般解の大域的解析は困難だが、昨年度発見した変数変換を更に改良することで、線形解と同様の分散性を示す大域解のクラスを構成することができた。技術的には、高周波でSchrodinger方程式、低周波で波動方程式に近い挙動を示す線形解の双線形分散性を幾何的に考慮した、時空での非停留位相評価が中心的役割を果たした。
すべて 2006 2005
すべて 雑誌論文 (2件)
Mathematical Research Letters 13,no.2
ページ: 273-285
Journal of Hyperbolic Differential Equations 2,no.4
ページ: 975-1008