• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2005 年度 実績報告書

ヒルベルト空間における不変部分空間の問題とその周辺

研究課題

研究課題/領域番号 15740097
研究機関鶴岡工業高等専門学校

研究代表者

大和田 智義  鶴岡工業高等専門学校, 機械工学科, 助教授 (50321386)

キーワードcrossed product / analytic subalgebra / maximality / invariant subspace / von Neumann algebra
研究概要

本研究の目的は,ヒルベルト空間における不変部分空間の問題に関連して,自己共役でない作用素環の構造を詳細に調べると共に,それに関する不変部分空間の構造解析を行うものである.解析的接合積は接合積の自己共役でない部分環としてよく知られていて,これまでに多くの興味深い結果が得られている.その一方で解析的部分環はArvesonによるスペクトル解析の研究に動機付けられ,作用素環における解析性の研究を中心に不変部分空間の構造や分解性そして極大性など様々な研究が盛んに行われてきた.von Neumann環のある部分環を真に含む部分環は全体である場合,その部分環は極大であるという.解析的接合積におけるσ弱閉部分環の極大性の問題は1980年代から盛んに行われているがそれらの研究は全てsemigroupを固定して考えられてきた.我々は極大性の問題をsemigroupの性質と結び付けて捉え直すことにより,その構造をより深く理解することが出来るのではないかと予想した.Archimedean totally orderを引き起こすsemigroupによる解析的接合積を考えたとき,そのdiagonalが因子環であることと解析的接合積が極大であることは知られていたが,一般のsemigroupに関して同様の結果が成立するかは興味深い問題である.そこで解析的接合積のdiagonalが因子環であるとき解析的接合積が極大なら,付随するsemigroupはどのような条件を満たさなければならないかを考え,archimedean totally orderを引き起こす場合に限ることを証明した.この解析に誘発されて接合積のdiagonalが因子環の場合,そのdiagonalを含む双対作用に関して不変なσ弱閉部分環とsemigroupとの間に一対一対応が付くことを突き止めて統括的に極大性の議論を論じることに成功した.この結果は極大性の問題だけに留まらず,部分環のガロア対応の理論をも含むものであり,多くの応用が期待される.またこれらの対応にある種の不変部分空間が対応すると予想され、今後不変部分空間の理論の発展にも期待が出来るが、これらは今後の研究課題である。

  • 研究成果

    (4件)

すべて 2006 2005 その他

すべて 雑誌論文 (4件)

  • [雑誌論文] A note on maximality of analytic crossed products2006

    • 著者名/発表者名
      T.Ohwada, G.Ji, A.Hasegawa, K-S Saito
    • 雑誌名

      Journal of Mathematical Analysis and Applications 315

      ページ: 216-224

  • [雑誌論文] 半群とL^∞(G)の部分環の対応とその応用2005

    • 著者名/発表者名
      T.Ohwada
    • 雑誌名

      数理解析研究所講究録 1445

      ページ: 145-151

  • [雑誌論文] Commutants of certain analytic operator algebras

    • 著者名/発表者名
      G.Ji, T.Ohwada, K-S Saito
    • 雑誌名

      Proceedings of the American Mathematical Society 印刷中

  • [雑誌論文] Sarason's interpolation theorem for analytic crossed products

    • 著者名/発表者名
      T.Ohwada
    • 雑誌名

      Functional analysis and its applications 印刷中

URL: 

公開日: 2007-04-02   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi