研究概要 |
1.固有関数の分布関数の漸近挙動を理解するために研究を進めた。この問題は、一般的な解決は困難であるが、球面などの対称性の高い空間のラプラス作用素の標準的な固有関数や調和振動子などの良く知られた作用素の固有関数の分布関数について、その漸近挙動の様子を知ることを目標とした。球面の固有関数、つまり球面調和関数の分布関数を調べるために、固有関数を射影子の積分核の表示を用いて積分表示し、漸折挙動を調べるという当初の方針は妥当なものであろうと思われる。しかし積分の特異点の周りでの挙動を解析しきれず、思わしい結果を得ることが出来なかった。今後の課題として残されている。 2.前年度にZelditch氏との共同研究で得た結果を、前年度に引き続き報告した。これは、コンパクト群の既約表現のテンソル積表現内のウェイトの重複度の漸近挙動に関する結果であった。この研究においてテンソル積の次数は粒子の数に相当するが、これを一般の楕円型作用素を用いて考えるとき、ボゾンガスの状態数が自然と現れる。ボゾンガスの状態数は解析数論でしばしば現れる分割数のスペクトル論的な類似物でもある。本年度は分割数の漸近挙動についてのMeinardusの定理の手法を用いて、ボゾンガスの状態数の漸近挙動を書き下すことに成功した。現存論文を作成中である。また、この内容は幾つかの研究会で発表したが、特にESI Educational workshop on discrete probability (3/21, ESI, Vienna)で講演した。さらに日本数学会年会(3月28日)で特別講演を行う予定である。 3.コンパクト群のテンソル積表現のウェイトの重複度の漸近挙動の問題に関連して、ランダム行列理論に自然に現れるモーメント積分の、テンソル積のパラメータについての漸近挙動について、現在Stolz氏と共同研究中である。
|