• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2015 年度 実施状況報告書

統辞・意味解析情報タグ付き日本語ツリーバンクからの視覚意味情報の抽出と応用

研究課題

研究課題/領域番号 15K02469
研究機関東北大学

研究代表者

バトラー アラステア  東北大学, 高度教養教育・学生支援機構, 非常勤講師 (90588873)

研究期間 (年度) 2015-04-01 – 2018-03-31
キーワードコーパス / 日本語 / 意味論 / 統語論
研究実績の概要

The research aims to develop methods of visualising and making accessible semantic information, e.g., predicate argument information, but also higher levels of analysis, such as propositional connectives as well as modal and negation operators. Such information has enabled, for example, the mapping out of language binding dependencies, which has proved particularly relevant as a method to reconstruct unpronounced argument information (zero pronouns) for Japanese.

To carry out this work it has been necessary to continue developing a method for reaching semantic representations automatically from syntactic parsed representations and to create a large base of already analysed and human checked syntactic structures that can be transformed to semantic representations. The establishment of such a base forms training data for creating yet more like data, with the potential to scale to large volumes of data.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

The work on visualisation has focused on ways to add descriptive power. Innovations have included (i) adding coded indexing carrying ontological information and (ii) folding represented material around "inverse roles that compact hierarchical structure. The presence of indexing has to a degree cluttered the visualisation but it has made possible flipping between different views of dimensions of content, e.g., with a dimension to best capture sentence content, and a dimension to best capture an overview of total discourse content. In contrast to indexing, the addition of inverse roles has greatly simplified visualisation and accessibility. As a side effect, this has created the foundation for supporting a method of natural language generation, that is, a way to get back to natural language from a semantic representation.

今後の研究の推進方策

Now that research is making semantic representations available of a high quality it has become possible to think about supporting natural language generation from meaning representations. This has enabled taking a natural language sentence, going to its meaning representation, and then back to a natural language sentence. Keeping to the same language tests the combined success of building meaning representations and of generating output. Switching languages when manipulating meaning representations would achieve machine translation. I am currently investigating transfer shortfall seen with meaning representations built from parsed parallel corpora data of Japanese-English.

I also aim to start supporting the creation of searching for semantic information by transforming semantic information into search patterns of tree extraction languages that are able to recover related semantic information.

  • 研究成果

    (5件)

すべて 2016 2015

すべて 雑誌論文 (4件) (うち査読あり 4件、 謝辞記載あり 4件) 図書 (1件)

  • [雑誌論文] 統語・意味解析情報付き日本語コーパスのアノテーション2016

    • 著者名/発表者名
      アラステア・バトラー・吉本啓・岸本秀樹・プラシャント・パルデシ
    • 雑誌名

      言語処理学会第22回年次大会発表論文集

      巻: 1 ページ: 589-592

    • 査読あり / 謝辞記載あり
  • [雑誌論文] 中国語連体修飾節構文の解析2016

    • 著者名/発表者名
      周振・Alastair Butler・吉本啓
    • 雑誌名

      言語処理学会第22回年次大会発表論文集

      巻: 1 ページ: 809-812

    • 査読あり / 謝辞記載あり
  • [雑誌論文] Something, namely "SomethingNamely"2015

    • 著者名/発表者名
      Alastair Butler
    • 雑誌名

      Proceedings of the Twelfth International Workshop of Logic and Engineering of Natural Language Semantics (LENLS 12)

      巻: 1 ページ: 215--228

    • 査読あり / 謝辞記載あり
  • [雑誌論文] Round trips with meaning stopovers2015

    • 著者名/発表者名
      Alastair Butler
    • 雑誌名

      Proceedings of the 1st Workshop on Semantics-Driven Statistical Machine Translation (S2MT 2015)

      巻: 1 ページ: 1--10

    • 査読あり / 謝辞記載あり
  • [図書] Linguistic Expressions and Semantic Processing: A Practical Approach2015

    • 著者名/発表者名
      Alastair Butler
    • 総ページ数
      172
    • 出版者
      Springer-Verlag

URL: 

公開日: 2017-01-06  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi