• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 実績報告書

正標数体上の志村多様体の幾何学とガロア表現の深化

研究課題

研究課題/領域番号 15K04787
研究機関東北大学

研究代表者

山内 卓也  東北大学, 理学研究科, 准教授 (90432707)

研究期間 (年度) 2015-04-01 – 2019-03-31
キーワード法pガロア表現 / セール予想 / 法p保型形式 / 等分布性 / ジーゲルモジュラー形式
研究実績の概要

今年度前期(5月から9月末まで)はドイツのマックスプランク研究所に滞在しガロア表現の保型性問題を解決することに向けた基礎研究を行った。特に法pガロア表現の保型性問題の定式化に関するセール予想を詳細に定式化することを行った。考える対象をGSp4に制限して法pガロア表現の良いリフトの存在の証明に取り組んだ。これに関連する問題はGee等によってかなり一般の場合に解決されていたが「潜在的対角化可能」な保型的p進ガロア表現へのリフトが存在するという強い仮定が課されていた。私はこの仮定をGSp4の場合に取り除くことに成功した。アイデアは私自身によって構成されたテータ作用素、Parahoric restriction, そして、Jacquet-Langlands 対応を駆使して良いリフトの存在を示すことであった。

またヘンリーキム氏と若槻氏と共に行ったGSp4の正則ジーゲル形式に対する佐竹固有値に関する等分布性の問題の結果を一般のrank nの斜交群Sp2nに対するジーゲル形式のスタンダードL関数に関連する佐竹固有値の等分布性を調べ重さとレベルに比較的緩い条件を仮定することで証明した。またこの応用としてジーゲル形式に付随するスタンダードL関数の零点がlow lying zeros であることをある特定に試験関数に対して証明した。さらに同両氏とGSp4の場合の等分布性問題を小さな群からのラングランズ関手による像となっていない場合に限定しても証明することができることを示した。
後期はBocherer-Nagaokaによるテータ作用素の幾何的解釈を得るべく代数群の表現特にテンソル表現の分規則を調べ、ガウスマニン接続を計算することでテータ作用素の幾何的解釈を与え、さらには超特異点での振る舞がどのようになっているか計算した。これはメルボルン大のA. Ghitza との共同研究で現在進行中である。

  • 研究成果

    (5件)

すべて 2019 2018 その他

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (3件) (うち招待講演 3件) 備考 (1件)

  • [雑誌論文] On the class numbers of the fields of the pn-torsion points of elliptic curves over Q2018

    • 著者名/発表者名
      F. Sairaiji and T. Yamauchi
    • 雑誌名

      Journal de Theorie des Nombres de Bordeaux

      巻: 30 ページ: 893-915

    • 査読あり
  • [学会発表] 宮脇型リフトの非消滅性について2019

    • 著者名/発表者名
      山内卓也
    • 学会等名
      京都大学第談話会
    • 招待講演
  • [学会発表] On Ikeda type and Miyawaki type construction of holomorphic cusp forms on Hermitian symmetric domains2019

    • 著者名/発表者名
      山内卓也
    • 学会等名
      NSU (National Singapore university) における招待講演
    • 招待講演
  • [学会発表] On theta operator2018

    • 著者名/発表者名
      山内卓也
    • 学会等名
      マンハイム大(ドイツ) における整数論セミナーでの招待講演
    • 招待講演
  • [備考]

    • URL

      http://www.sci.tohoku.ac.jp/news/20160920-8035.html

URL: 

公開日: 2019-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi