• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2015 年度 実施状況報告書

Geometric Iwasawa Theory

研究課題

研究課題/領域番号 15K04793
研究機関上智大学

研究代表者

TRIHAN FABIEN  上智大学, 理工学部, 准教授 (60738300)

研究期間 (年度) 2015-04-01 – 2019-03-31
キーワードIwasawa Theory / abelian varieties
研究実績の概要

1) Concerning:Theorem 1.There exists a canonical Dieudonne crystal D(A) on the log curve (C,Z) extending D(A) such
that the mapping fiber of 1-Frobenius on the crystalline cohomology of D(A) (called syntomic cohomology) can be computed by the flat cohomology of the p-torsion points of A.Me and my co-author met in 2015 and were able to progress in the writing of the paper.A preliminary version of the paper can be found here:http://arxiv.org/abs/1505.029422) For application to non-commutative Iwasawa Main conjecture, we plan to meet again this summer with D. Vauclair.
3) With my other co-authors K.F. Lai, I. Longhi and K.-S. Tan, we have published this year 2016 two new papers:K.F. Lai, I. Longhi, K.-S. Tan , F. Trihan, The Iwasawa Main conjecture of constant ordinary abelian varieties over function fields, to appear in the Proceedings of the London Mathematical Society. K.F. Lai, I. Longhi, K.-S. Tan , F. Trihan, The Iwasawa main conjecture for semistable abelian varieties over function fields, Math. Z. 282 (2016), no. 1-2, 485-510.We are still working on a project on the Pontryagin duality for Iwasawa modules and abelian varieties that we expect to complete this year or the next one.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Our initial objective was to complete the objective 1) with D. Vauclair. We are not completely done because the project is much bigger as we thought (near 200 pages). On the other end, the project with Ki-Seng Tan and others is progressing faster than expected with already two papers accepted for publication in 2016.

今後の研究の推進方策

The plan for the next years is 1)Complete the first project wit David Vauclair about comparison between flat and syntomic cohomologies.2) Apply it to the non-commutative Iwasawa main conjecture for abelian varieties over function fields.
3)Finish the project with Tan and others to offer new cases the Iwasawa Main conjecture for abelian varieties over function fields

次年度使用額が生じた理由

Some Professors that I wanted to invite declined for this academic year but they assured me that they will come during the next academic year.

次年度使用額の使用計画

I will visit my co-authors and will invite them back to Sophia University.

  • 研究成果

    (3件)

すべて 2016

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (2件) (うち招待講演 2件)

  • [雑誌論文] The Iwasawa main conjecture for semistable abelian varieties over function fields2016

    • 著者名/発表者名
      K.F. Lai, I. Longhi, K.-S. Tan , F. Trihan
    • 雑誌名

      Mathematische Zeitschrift

      巻: 282 ページ: 485-510

    • DOI

      DOI 10.1007/s00209-015-1550-4

    • 査読あり / 国際共著
  • [学会発表] Geometric Iwasawa Theory2016

    • 著者名/発表者名
      Fabien Trihan
    • 学会等名
      Colloquium of Strasbourg University
    • 発表場所
      Strasbourg University, Alsace, France
    • 年月日
      2016-04-04
    • 招待講演
  • [学会発表] Geometric Iwasawa Theory2016

    • 著者名/発表者名
      Fabien Trihan
    • 学会等名
      Colloquium of Harish Chandra Institute
    • 発表場所
      Harish Chandra Institute, Allahabad, India
    • 年月日
      2016-02-26
    • 招待講演

URL: 

公開日: 2017-01-06  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi