素数の研究で重要なリーマンのゼータ関数が関数等式を満たす原因の一つに、ある多項式の複素べきのフーリエ変換が本質的にまた多項式の複素べきになっている事実がある。佐藤幹夫は、多項式が大きな群の作用に関して相対不変式である場合に、そのような性質を持つことをつきとめて概均質ベクトル空間の理論を作った。とくに群が簡約可能代数群で、その稠密軌道の余集合が既約超曲面になっている場合に、良い性質を持つ概均質ベクトル空間とよぶ。この場合に関数等式を満たす1変数概均質ゼータ関数がリーマンのゼータ関数の一般化として新谷卓郎らによって得られる。この良い概均質ベクトル空間を具体的に求めるのが目的である条件で分類出来た。
|