1次元結び目の研究においては 結び目図式のスケイン関係式を用いて多項式不変量やホモロジー不変量の研究が発展している。しかし2次元結び目の研究においては結び目図式のスケイン関係式をうまく定義することができないため基本群やカンドル構造を使った研究が中心である。1次元結び目の研究においてスケイン関係式を使わずに定義された接触ホモロジー理論から着想を得て、2次元結び目の研究にホモロジー不変量を導入することができた。これにより2次元結び目の研究においても1次元結び目の研究に追随する進展を期待することができる。
|