本研究課題においては、競争関係にある2種類の生物種の個体群密度の時空的変化を記述する反応拡散系に関する研究を行った。具体的には、交差拡散項とよばれる非線形拡散項を伴うロトカ・ボルテラ系(重定・川崎・寺本モデル,1979)に対して、交差拡散項の係数を無限大まで大きくしたときの定常解の漸近挙動を調べた。従来の研究が後れていた「第2極限系」とよばれる近似問題に対して、解の大域分岐構造を明確化した。この研究成果によって、重定・川崎・寺本モデルの定常解集合がサドルノード分岐曲線とよばれる釣り針状の曲線をなすことが明らかになった。
|